aimpoint-www.aimpointsiwan.com

Exercise 11.1

Question 1:

If a line makes angles 90°, 135°, 45° with x, y and z-axes respectively, find its direction cosines.

Answer

Let direction cosines of the line be I, m, and n.

$$l = \cos 90^\circ = 0$$
$$m = \cos 135^\circ = -\frac{1}{\sqrt{2}}$$
$$n = \cos 45^\circ = \frac{1}{\sqrt{2}}$$

Therefore, the direction cosines of the line are $0, -\frac{1}{\sqrt{2}}$, and $\frac{1}{\sqrt{2}}$.

Question 2:

Find the direction cosines of a line which makes equal angles with the coordinate axes. Answer

Let the direction cosines of the line make an angle *a* with each of the coordinate axes.

 $\therefore l = \cos a, m = \cos a, n = \cos a$

$$l^{2} + m^{2} + n^{2} = 1$$

$$\Rightarrow \cos^{2} \alpha + \cos^{2} \alpha + \cos^{2} \alpha = 1$$

$$\Rightarrow 3\cos^{2} \alpha = 1$$

$$\Rightarrow \cos^{2} \alpha = \frac{1}{3}$$

$$\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{3}}$$

Thus, the direction cosines of the line, which is equally inclined to the coordinate axes,

are
$$\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$$
, and $\pm \frac{1}{\sqrt{3}}$.

Question 3:

If a line has the direction ratios -18, 12, -4, then what are its direction cosines? Answer

If a line has direction ratios of -18, 12, and -4, then its direction cosines are

$$\frac{-18}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}, \frac{12}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-18)^2 + (12)^2 + (-4)^2}}$$

i.e., $\frac{-18}{22}, \frac{12}{22}, \frac{-4}{22}$
 $\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$

Thus, the direction cosines are $-\frac{9}{11}$, $\frac{6}{11}$, and $\frac{-2}{11}$.

Question 4:

Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear.

Answer

The given points are A (2, 3, 4), B (- 1, - 2, 1), and C (5, 8, 7).

It is known that the direction ratios of line joining the points, (x_1, y_1, z_1) and (x_2, y_2, z_2) , are given by, $x_2 - x_1$, $y_2 - y_1$, and $z_2 - z_1$.

The direction ratios of AB are (-1 - 2), (-2 - 3), and (1 - 4) i.e., -3, -5, and -3.

The direction ratios of BC are (5 - (-1)), (8 - (-2)), and (7 - 1) i.e., 6, 10, and 6.

It can be seen that the direction ratios of BC are -2 times that of AB i.e., they are proportional.

Therefore, AB is parallel to BC. Since point B is common to both AB and BC, points A, B, and C are collinear.

Question 5:

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, -4), (-

1, 1, 2) and (- 5, - 5, - 2)

Answer

The vertices of \triangle ABC are A (3, 5, -4), B (-1, 1, 2), and C (-5, -5, -2).

The direction ratios of side AB are (-1 - 3), (1 - 5), and (2 - (-4)) i.e., -4, -4, and 6.

Then,
$$\sqrt{(-4)^2 + (-4)^2 + (6)^2} = \sqrt{16 + 16 + 36}$$

= $\sqrt{68}$
= $2\sqrt{17}$

Therefore, the direction cosines of AB are

$$\frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{6}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-4)^2 + (6)^2}}, \frac{-4}{2\sqrt{17}}, -\frac{4}{2\sqrt{17}}, \frac{6}{2\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}$$

The direction ratios of BC are (-5 - (-1)), (-5 - 1), and (-2 - 2) i.e., -4, -6, and -4. Therefore, the direction cosines of BC are

$$\frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-6}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}, \frac{-4}{\sqrt{(-4)^2 + (-6)^2 + (-4)^2}}$$

i.e.,
$$\frac{-4}{2\sqrt{17}}, \frac{-6}{2\sqrt{17}}, \frac{-4}{2\sqrt{17}}$$

The direction ratios of CA are (-5 - 3), (-5 - 5), and (-2 - (-4)) i.e., -8, -10, and 2. Therefore, the direction cosines of AC are

$$\frac{-8}{\sqrt{(-8)^2 + (10)^2 + (2)^2}}, \frac{-5}{\sqrt{(-8)^2 + (10)^2 + (2)^2}}, \frac{2}{\sqrt{(-8)^2 + (10)^2 + (2)^2}}$$

i.e., $\frac{-8}{2\sqrt{42}}, \frac{-10}{2\sqrt{42}}, \frac{2}{2\sqrt{42}}$

Exercise 11.2

Question 1:

Show that the three lines with direction cosines

 $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}; \frac{4}{13}, \frac{12}{13}, \frac{3}{13}; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

Answer

Two lines with direction cosines, l_1 , m_1 , n_1 and l_2 , m_2 , n_2 , are perpendicular to each other, if $l_1l_2 + m_1m_2 + n_1n_2 = 0$

(i) For the lines with direction cosines, $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}$ and $\frac{4}{13}, \frac{12}{13}, \frac{3}{13}$, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \frac{12}{13} \times \frac{4}{13} + \left(\frac{-3}{13}\right) \times \frac{12}{13} + \left(\frac{-4}{13}\right) \times \frac{3}{13}$$
$$= \frac{48}{169} - \frac{36}{169} - \frac{12}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

(ii) For the lines with direction cosines, $\frac{4}{13}$, $\frac{12}{13}$, $\frac{3}{13}$ and $\frac{3}{13}$, $\frac{-4}{13}$, $\frac{12}{13}$, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \frac{4}{13} \times \frac{3}{13} + \frac{12}{13} \times \left(\frac{-4}{13}\right) + \frac{3}{13} \times \frac{12}{13}$$
$$= \frac{12}{169} - \frac{48}{169} + \frac{36}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

(iii) For the lines with direction cosines, $\frac{3}{13}$, $\frac{-4}{13}$, $\frac{12}{13}$ and $\frac{12}{13}$, $\frac{-3}{13}$, $\frac{-4}{13}$, we obtain

$$l_1 l_2 + m_1 m_2 + n_1 n_2 = \left(\frac{3}{13}\right) \times \left(\frac{12}{13}\right) + \left(\frac{-4}{13}\right) \times \left(\frac{-3}{13}\right) + \left(\frac{12}{13}\right) \times \left(\frac{-4}{13}\right)$$
$$= \frac{36}{169} + \frac{12}{169} - \frac{48}{169}$$
$$= 0$$

Therefore, the lines are perpendicular.

Thus, all the lines are mutually perpendicular.

Question 2:

Show that the line through the points (1, -1, 2) (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Answer

Let AB be the line joining the points, (1, -1, 2) and (3, 4, -2), and CD be the line joining the points, (0, 3, 2) and (3, 5, 6).

The direction ratios, a_1 , b_1 , c_1 , of AB are (3 - 1), (4 - (-1)), and (-2 - 2) i.e., 2, 5, and -4.

The direction ratios, a_2 , b_2 , c_2 , of CD are (3 - 0), (5 - 3), and (6 - 2) i.e., 3, 2, and 4. AB and CD will be perpendicular to each other, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

Ab and cb will be perpendicular to each other, if $a_1a_2 + b_1b_2 + c_2a_2$

$$a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 3 + 5 \times 2 + (-4) \times 4$$

$$= 6 + 10 - 16$$

= 0

Therefore, AB and CD are perpendicular to each other.

Question 3:

Show that the line through the points (4, 7, 8) (2, 3, 4) is parallel to the line through the points (-1, -2, 1), (1, 2, 5).

Answer

Let AB be the line through the points, (4, 7, 8) and (2, 3, 4), and CD be the line through the points, (-1, -2, 1) and (1, 2, 5).

The directions ratios, a_1 , b_1 , c_1 , of AB are (2 - 4), (3 - 7), and (4 - 8) i.e., -2, -4, and -4.

The direction ratios, a_2 , b_2 , c_2 , of CD are (1 - (-1)), (2 - (-2)), and (5 - 1) i.e., 2, 4, and 4.

AB will be parallel to CD, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\frac{a_1}{a_2} = \frac{-2}{2} = -1$ $\frac{b_1}{b_2} = \frac{-4}{4} = -1$ $\frac{c_1}{c_2} = \frac{-4}{4} = -1$ $\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Thus, AB is parallel to CD.

Question 4:

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to

the vector
$$3\hat{i} + 2\hat{j} - 2\hat{k}$$
.

Answer

It is given that the line passes through the point A (1, 2, 3). Therefore, the position

vector through A is
$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$

 $\vec{b} = 3\hat{i} + 2\hat{j} - 2\hat{k}$

It is known that the line which passes through point A and parallel to \vec{b} is given by

 $\vec{r} = \vec{a} + \lambda \vec{b}$, where λ is a constant.

$$\Rightarrow \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda\left(3\hat{i} + 2\hat{j} - 2\hat{k}\right)$$

This is the required equation of the line.

Question 5:

Find the equation of the line in vector and in Cartesian form that passes through the

point with position vector $2\hat{i} - \hat{j} + 4\hat{k}$ and is in the direction $\hat{i} + 2\hat{j} - \hat{k}$.

Answer

It is given that the line passes through the point with position vector

 $\vec{a} = 2\hat{i} - \hat{j} + 4\hat{k}$...(1) $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$...(2)

It is known that a line through a point with position vector \vec{a} and parallel to \vec{b} is given by

the equation,
$$\vec{r} = \vec{a} + \lambda \vec{b}$$

 $\Rightarrow \vec{r} = 2\hat{i} - \hat{j} + 4\hat{k} + \lambda (\hat{i} + 2\hat{j} - \hat{k})$

This is the required equation of the line in vector form.

$$\vec{r} = x\hat{i} - y\hat{j} + z\hat{k}$$
$$\Rightarrow x\hat{i} - y\hat{j} + z\hat{k} = (\lambda + 2)\hat{i} + (2\lambda - 1)\hat{j} + (-\lambda + 4)\hat{k}$$

Eliminating λ , we obtain the Cartesian form equation as

$$\frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{-1}$$

This is the required equation of the given line in Cartesian form.

Question 6:

Class XII

Find the Cartesian equation of the line which passes through the point

(-2, 4, -5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ Answer

It is given that the line passes through the point (-2, 4, -5) and is parallel to

$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$

The direction ratios of the line, $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$, are 3, 5, and 6.

The required line is parallel to $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ Therefore, its direction ratios are 3k, 5k, and 6k, where $k \neq 0$

It is known that the equation of the line through the point (x_1, y_1, z_1) and with direction

ratios, *a*, *b*, *c*, is given by $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$

Therefore the equation of the required line is

$$\frac{x+2}{3k} = \frac{y-4}{5k} = \frac{z+5}{6k}$$
$$\Rightarrow \frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6} = k$$

Question 7:

The Cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$. Write its vector form. Answer

The Cartesian equation of the line is

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2} \qquad \dots (1)$$

The given line passes through the point (5, -4, 6). The position vector of this point is $\vec{a} = 5\hat{i} - 4\hat{j} + 6\hat{k}$

Also, the direction ratios of the given line are 3, 7, and 2.

This means that the line is in the direction of vector, $\vec{b} = 3\hat{i} + 7\hat{j} + 2\hat{k}$

It is known that the line through position vector \vec{a} and in the direction of the vector \vec{b} is

given by the equation, $\vec{r} = \vec{a} + \lambda \vec{b}, \lambda \in R$

$$\Rightarrow \vec{r} = \left(5\hat{i} - 4\hat{j} + 6\hat{k}\right) + \lambda\left(3\hat{i} + 7\hat{j} + 2\hat{k}\right)$$

This is the required equation of the given line in vector form.

Question 8:

Find the vector and the Cartesian equations of the lines that pass through the origin and (5, -2, 3).

Answer

The required line passes through the origin. Therefore, its position vector is given by,

$$\vec{a} = \vec{0}$$
 ... (1)

The direction ratios of the line through origin and (5, -2, 3) are

(5 - 0) = 5, (-2 - 0) = -2, (3 - 0) = 3

The line is parallel to the vector given by the equation, $\vec{b} = 5\hat{i} - 2\hat{j} + 3\hat{k}$

The equation of the line in vector form through a point with position vector \vec{a} and parallel

to
$$\vec{b}$$
 is, $\vec{r} = \vec{a} + \lambda \vec{b}$, $\lambda \in R$
 $\Rightarrow \vec{r} = \vec{0} + \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k}\right)$
 $\Rightarrow \vec{r} = \lambda \left(5\hat{i} - 2\hat{j} + 3\hat{k}\right)$

The equation of the line through the point (x_1, y_1, z_1) and direction ratios a, b, c is given

by,
$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

Therefore, the equation of the required line in the Cartesian form is

$$\frac{x-0}{5} = \frac{y-0}{-2} = \frac{z-0}{3}$$
$$\Rightarrow \frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$$

Question 9:

Find the vector and the Cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6).

Answer

Let the line passing through the points, P (3, -2, -5) and Q (3, -2, 6), be PQ.

Since PQ passes through P (3, -2, -5), its position vector is given by,

$$\vec{a} = 3\hat{i} - 2\hat{j} - 5\hat{k}$$

The direction ratios of PQ are given by,

$$(3 - 3) = 0, (-2 + 2) = 0, (6 + 5) = 11$$

The equation of the vector in the direction of PQ is

$$\vec{b} = 0.\hat{i} - 0.\hat{j} + 11\hat{k} = 11\hat{k}$$

The equation of PQ in vector form is given by, $\vec{r} = \vec{a} + \lambda \vec{b}$, $\lambda \in R$

$$\Rightarrow \vec{r} = (3\hat{i} - 2\hat{j} - 5\hat{k}) + 11\lambda\hat{k}$$

The equation of PQ in Cartesian form is

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} \text{ i.e., } \frac{x - 3}{0} = \frac{y + 2}{0} = \frac{z + 5}{11}$$

Question 10:

Find the angle between the following pairs of lines:

(i)
$$\vec{r} = 2\hat{i} - 5\hat{j} + \hat{k} + \lambda (3\hat{i} - 2\hat{j} + 6\hat{k})$$
 and
 $\vec{r} = 7\hat{i} - 6\hat{k} + \mu (\hat{i} + 2\hat{j} + 2\hat{k})$
(ii) $\vec{r} = 3\hat{i} + \hat{j} - 2\hat{k} + \lambda (\hat{i} - \hat{j} - 2\hat{k})$ and
 $\vec{r} = 2\hat{i} - \hat{j} - 56\hat{k} + \mu (3\hat{i} - 5\hat{j} - 4\hat{k})$

Answer

(i) Let Q be the angle between the given lines.

The angle between the given pairs of lines is given by, $\cos Q = \left| \frac{\vec{b_1} \cdot \vec{b_2}}{\left| \vec{b_1} \right| \left| \vec{b_2} \right|} \right|$

The given lines are parallel to the vectors, $\vec{b_1} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ and $\vec{b_2} = \hat{i} + 2\hat{j} + 2\hat{k}$, respectively.

$$\begin{aligned} \therefore \left| \vec{b_1} \right| &= \sqrt{3^2 + 2^2 + 6^2} = 7 \\ \left| \vec{b_2} \right| &= \sqrt{\left(1 \right)^2 + \left(2 \right)^2 + \left(2 \right)^2} = 3 \\ \vec{b_1} \cdot \vec{b_2} &= \left(3\hat{i} + 2\hat{j} + 6\hat{k} \right) \cdot \left(\hat{i} + 2\hat{j} + 2\hat{k} \right) \\ &= 3 \times 1 + 2 \times 2 + 6 \times 2 \\ &= 3 + 4 + 12 \\ &= 19 \end{aligned}$$

$$\Rightarrow \cos Q = \frac{19}{7 \times 3}$$
$$\Rightarrow Q = \cos^{-1} \left(\frac{19}{21}\right)$$

(ii) The given lines are parallel to the vectors, $\vec{b_1} = \hat{i} - \hat{j} - 2\hat{k}$ and $\vec{b_2} = 3\hat{i} - 5\hat{j} - 4\hat{k}$, respectively.

$$\begin{aligned} \therefore |\vec{b}_{1}| &= \sqrt{(1)^{2} + (-1)^{2} + (-2)^{2}} = \sqrt{6} \\ |\vec{b}_{2}| &= \sqrt{(3)^{2} + (-5)^{2} + (-4)^{2}} = \sqrt{50} = 5\sqrt{2} \\ \vec{b}_{1} \cdot \vec{b}_{2} &= (\hat{i} - \hat{j} - 2\hat{k}) \cdot (3\hat{i} - 5\hat{j} - 4\hat{k}) \\ &= 1 \cdot 3 - 1(-5) - 2(-4) \\ &= 3 + 5 + 8 \\ &= 16 \\ \cos Q &= \left| \frac{\vec{b}_{1} \cdot \vec{b}_{2}}{|\vec{b}_{1}||\vec{b}_{2}|} \right| \\ \Rightarrow \cos Q &= \frac{16}{\sqrt{6} \cdot 5\sqrt{2}} = \frac{16}{\sqrt{2} \cdot \sqrt{3} \cdot 5\sqrt{2}} = \frac{16}{10\sqrt{3}} \\ \Rightarrow \cos Q &= \frac{8}{5\sqrt{3}} \\ \Rightarrow Q &= \cos^{-1} \left(\frac{8}{5\sqrt{3}} \right) \end{aligned}$$

Question 11:

Find the angle between the following pairs of lines:

(i)
$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$
(ii) $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and $\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$

Answer

Let $ec{b_1}$ and $ec{b_2}$ be the vectors parallel to the pair of lines,

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3} \text{ and } \frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}, \text{ respectively.}$$

$$\therefore \vec{b}_1 = 2\hat{i} + 5\hat{j} - 3\hat{k} \text{ and } \vec{b}_2 = -\hat{i} + 8\hat{j} + 4\hat{k}$$

$$\left|\vec{b}_1\right| = \sqrt{(2)^2 + (5)^2 + (-3)^2} = \sqrt{38}$$

$$\left|\vec{b}_2\right| = \sqrt{(-1)^2 + (8)^2 + (4)^2} = \sqrt{81} = 9$$

$$\vec{b}_1 \cdot \vec{b}_2 = (2\hat{i} + 5\hat{j} - 3\hat{k}) \cdot (-\hat{i} + 8\hat{j} + 4\hat{k})$$

$$= 2(-1) + 5 \times 8 + (-3) \cdot 4$$

$$= -2 + 40 - 12$$

$$= 26$$

The angle, Q, between the given pair of lines is given by the relation,

$$\cos Q = \left| \frac{\vec{b}_1 \cdot \vec{b}_2}{\left| \vec{b}_1 \right| \left| \vec{b}_2 \right|} \right|$$
$$\Rightarrow \cos Q = \frac{26}{9\sqrt{38}}$$
$$\Rightarrow Q = \cos^{-1} \left(\frac{26}{9\sqrt{38}} \right)$$

(ii) Let \vec{b}_1, \vec{b}_2 be the vectors parallel to the given pair of lines, $\frac{x}{2} = \frac{y}{2} = \frac{z}{1}$ and

$$\frac{x-5}{4} = \frac{y-5}{1} = \frac{z-3}{8}$$
, respectively.

$$\vec{b}_{1} = 2\hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{b}_{2} = 4\hat{i} + \hat{j} + 8\hat{k}$$

$$\therefore |\vec{b}_{1}| = \sqrt{(2)^{2} + (2)^{2} + (1)^{2}} = \sqrt{9} = 3$$

$$|\vec{b}_{2}| = \sqrt{4^{2} + 1^{2} + 8^{2}} = \sqrt{81} = 9$$

$$\vec{b}_{1} \cdot \vec{b}_{2} = (2\hat{i} + 2\hat{j} + \hat{k}) \cdot (4\hat{i} + \hat{j} + 8\hat{k})$$

$$= 2 \times 4 + 2 \times 1 + 1 \times 8$$

$$= 8 + 2 + 8$$

$$= 18$$

If Q is the angle between the given pair of lines, then $\cos Q = \left| \frac{\vec{b_1} \cdot \vec{b_2}}{\left| \vec{b_1} \right| \left| \vec{b_2} \right|} \right|$ $\Rightarrow \cos Q = \frac{18}{3 \times 9} = \frac{2}{3}$ $\Rightarrow Q = \cos^{-1} \left(\frac{2}{3} \right)$

Question 12:

Find the values of p so the line $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles.

Answer

The given equations can be written in the standard form as

$$\frac{x-1}{-3} = \frac{y-2}{\frac{2p}{7}} = \frac{z-3}{2} \text{ and } \frac{x-1}{\frac{-3p}{7}} = \frac{y-5}{1} = \frac{z-6}{-5}$$

The direction ratios of the lines are -3, $\frac{2p}{7}$, 2 and $\frac{-3p}{7}$, 1, -5 respectively. Two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1 b_2 + c_1c_2 = 0$

$$\therefore (-3) \cdot \left(\frac{-3p}{7}\right) + \left(\frac{2p}{7}\right) \cdot (1) + 2 \cdot (-5) = 0$$
$$\Rightarrow \frac{9p}{7} + \frac{2p}{7} = 10$$
$$\Rightarrow 11p = 70$$
$$\Rightarrow p = \frac{70}{11}$$

Thus, the value of p is $\frac{70}{11}$.

Question 13:

Show that the lines $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other. Answer

The equations of the given lines are $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$

The direction ratios of the given lines are 7, -5, 1 and 1, 2, 3 respectively. Two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular to each other, if $a_1a_2 + b_1 b_2 + c_1c_2 = 0$

 \therefore 7 × 1 + (-5) × 2 + 1 × 3

= 7 - 10 + 3= 0

Therefore, the given lines are perpendicular to each other.

Question 14:

Find the shortest distance between the lines

$$\vec{r} = \left(\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda\left(\hat{i} - \hat{j} + \hat{k}\right) \text{and}$$
$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu\left(2\hat{i} + \hat{j} + 2\hat{k}\right)$$

Answer

The equations of the given lines are

$$\vec{r} = \left(\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda\left(\hat{i} - \hat{j} + \hat{k}\right)$$
$$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu\left(2\hat{i} + \hat{j} + 2\hat{k}\right)$$

It is known that the shortest distance between the lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, is given by,

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_2 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (1)$$

Comparing the given equations, we obtain

$$\begin{aligned} \vec{a}_{1} &= \hat{i} + 2\hat{j} + \hat{k} \\ \vec{b}_{1} &= \hat{i} - \hat{j} + \hat{k} \\ \vec{a}_{2} &= 2\hat{i} - \hat{j} - \hat{k} \\ \vec{b}_{2} &= 2\hat{i} + \hat{j} + 2\hat{k} \\ \vec{a}_{2} - \vec{a}_{1} &= \left(2\hat{i} - \hat{j} - \hat{k}\right) - \left(\hat{i} + 2\hat{j} + \hat{k}\right) = \hat{i} - 3\hat{j} - 2\hat{k} \\ \vec{b}_{1} \times \vec{b}_{2} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} \\ \vec{b}_{1} \times \vec{b}_{2} &= (-2 - 1)\hat{i} - (2 - 2)\hat{j} + (1 + 2)\hat{k} = -3\hat{i} + 3\hat{k} \\ \Rightarrow \left| \vec{b}_{1} \times \vec{b}_{2} \right| = \sqrt{(-3)^{2} + (3)^{2}} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \end{aligned}$$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{\left(-3\hat{i} + 3\hat{k}\right) \cdot \left(\hat{i} - 3\hat{j} - 2\hat{k}\right)}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \left| \frac{-3.1 + 3\left(-2\right)}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \left| \frac{-9}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \left| \frac{-9}{3\sqrt{2}} \right|$$
$$\Rightarrow d = \frac{3}{\sqrt{2}} = \frac{3 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{3\sqrt{2}}{2}$$

Therefore, the shortest distance between the two lines is $\frac{3\sqrt{2}}{2}$ units.

Question 15:

Find the shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ Answer

The given lines are $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$

It is known that the shortest distance between the two lines,

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \text{ and } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}, \text{ is given by,}$$

$$d = \frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\sqrt{(b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2 + (a_1 b_2 - a_2 b_1)^2}} \dots (1)$$

Comparing the given equations, we obtain

$$\begin{aligned} x_1 &= -1, \ y_1 = -1, \ z_1 = -1 \\ a_1 &= 7, \ b_1 = -6, \ c_1 = 1 \\ x_2 &= 3, \ y_2 = 5, \ z_2 = 7 \\ a_2 &= 1, \ b_2 = -2, \ c_2 = 1 \end{aligned}$$
Then,
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 4 & 6 & 8 \\ 7 & -6 & 1 \\ 1 & -2 & 1 \end{vmatrix}$$

$$= 4(-6+2) - 6(7-1) + 8(-14+6) = -16 - 36 - 64 = -116 \end{aligned}$$

$$\Rightarrow \sqrt{(b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 + (a_1b_2 - a_2b_1)^2} = \sqrt{(-6+2)^2 + (1+7)^2 + (-14+6)^2} = \sqrt{16+36+64} = \sqrt{116} = 2\sqrt{29}$$

Substituting all the values in equation (1), we obtain

$$d = \frac{-116}{2\sqrt{29}} = \frac{-58}{\sqrt{29}} = \frac{-2 \times 29}{\sqrt{29}} = -2\sqrt{29}$$

Since distance is always non-negative, the distance between the given lines is $2\sqrt{29}$ units.

Question 16:

Find the shortest distance between the lines whose vector equations are

$$\vec{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}\right) + \lambda\left(\hat{i} - 3\hat{j} + 2\hat{k}\right)$$

and $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu\left(2\hat{i} + 3\hat{j} + \hat{k}\right)$

Answer

The given lines are
$$\vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda(\hat{i} - 3\hat{j} + 2\hat{k})$$
 and $\vec{r} = 4\hat{i} + 5\hat{j} + 6\hat{k} + \mu(2\hat{i} + 3\hat{j} + \hat{k})$

It is known that the shortest distance between the lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, is given by,

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_2 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (1)$$

Comparing the given equations with $ec{r}=ec{a}_{_1}+\lambdaec{b}_{_1}$ and $ec{r}=ec{a}_{_2}+\muec{b}_{_2}$, we obtain

$$\vec{a}_{1} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\vec{b}_{1} = \hat{i} - 3\hat{j} + 2\hat{k}$$

$$\vec{a}_{2} = 4\hat{i} + 5\hat{j} + 6\hat{k}$$

$$\vec{b}_{2} = 2\hat{i} + 3\hat{j} + \hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 3\hat{j} + 3\hat{k}$$

$$\vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix} = (-3 - 6)\hat{i} - (1 - 4)\hat{j} + (3 + 6)\hat{k} = -9\hat{i} + 3\hat{j} + 9\hat{k}$$

$$\Rightarrow \left| \vec{b}_{1} \times \vec{b}_{2} \right| = \sqrt{(-9)^{2} + (3)^{2} + (9)^{2}} = \sqrt{81 + 9 + 81} = \sqrt{171} = 3\sqrt{19}$$

$$\left(\vec{b}_{1} \times \vec{b}_{2} \right) \cdot \left(\vec{a}_{2} - \vec{a}_{1} \right) = \left(-9\hat{i} + 3\hat{j} + 9\hat{k} \right) \cdot \left(3\hat{i} + 3\hat{j} + 3\hat{k} \right)$$

$$= -9 \times 3 + 3 \times 3 + 9 \times 3$$

$$= -9$$

Substituting all the values in equation (1), we obtain

$$d = \left|\frac{9}{3\sqrt{19}}\right| = \frac{3}{\sqrt{19}}$$

Therefore, the shortest distance between the two given lines is $\frac{3}{\sqrt{19}}$ units.

Question 17:

Find the shortest distance between the lines whose vector equations are

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$
 and
 $\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$

Answer

The given lines are

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$

$$\Rightarrow \vec{r} = (\hat{i} - 2\hat{j} + 3\hat{k}) + t(-\hat{i} + \hat{j} - 2\hat{k}) \qquad \dots(1)$$

$$\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$$

$$\Rightarrow \vec{r} = (\hat{i} - \hat{j} + \hat{k}) + s(\hat{i} + 2\hat{j} - 2\hat{k}) \qquad \dots(2)$$

It is known that the shortest distance between the lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$, is given by,

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_2 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (3)$$

For the given equations,

$$\vec{a}_{1} = \hat{i} - 2\hat{j} + 3\hat{k}$$

$$\vec{b}_{1} = -\hat{i} + \hat{j} - 2\hat{k}$$

$$\vec{a}_{2} = \hat{i} - \hat{j} - \hat{k}$$

$$\vec{b}_{2} = \hat{i} + 2\hat{j} - 2\hat{k}$$

$$\vec{a}_{2} - \vec{a}_{1} = (\hat{i} - \hat{j} - \hat{k}) - (\hat{i} - 2\hat{j} + 3\hat{k}) = \hat{j} - 4\hat{k}$$

$$\vec{b}_{1} \times \vec{b}_{2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = (-2 + 4)\hat{i} - (2 + 2)\hat{j} + (-2 - 1)\hat{k} = 2\hat{i} - 4\hat{j} - 3\hat{k}$$

$$\Rightarrow \left| \vec{b}_{1} \times \vec{b}_{2} \right| = \sqrt{(2)^{2} + (-4)^{2} + (-3)^{2}} = \sqrt{4 + 16 + 9} = \sqrt{29}$$

$$\therefore \left(\vec{b}_{1} \times \vec{b}_{2} \right) \cdot \left(\vec{a}_{2} - \vec{a}_{1} \right) = (2\hat{i} - 4\hat{j} - 3\hat{k}) \cdot \left(\hat{j} - 4\hat{k} \right) = -4 + 12 = 8$$

Substituting all the values in equation (3), we obtain

$$d = \left|\frac{8}{\sqrt{29}}\right| = \frac{8}{\sqrt{29}}$$

Therefore, the shortest distance between the lines is $\frac{8}{\sqrt{29}}$ units.

Exercise 11.3

Question 1:

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

(a)z = 2 (b) x + y + z = 1

(c)
$$2x + 3y - z = 5$$
 (d) $5y + 8 = 0$

Answer

(a) The equation of the plane is z = 2 or 0x + 0y + z = 2 ... (1) The direction ratios of normal are 0, 0, and 1.

$$\sqrt{0^2 + 0^2 + 1^2} = 1$$

Dividing both sides of equation (1) by 1, we obtain

$$0.x + 0.y + 1.z = 2$$

This is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

Therefore, the direction cosines are 0, 0, and 1 and the distance of the plane from the origin is 2 units.

(b) $x + y + z = 1 \dots (1)$

The direction ratios of normal are 1, 1, and 1.

$$\sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$$

Dividing both sides of equation (1) by $\sqrt{3}$, we obtain

$$\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = \frac{1}{\sqrt{3}} \qquad \dots (2)$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal are $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$, and $\frac{1}{\sqrt{3}}$ and the distance of normal from the origin is $\frac{1}{\sqrt{3}}$ units.

(c) $2x + 3y - z = 5 \dots (1)$

The direction ratios of normal are 2, 3, and -1.

$$\therefore \sqrt{(2)^{2} + (3)^{2} + (-1)^{2}} = \sqrt{14}$$

Dividing both sides of equation (1) by $\sqrt{14}$, we obtain

$$\frac{2}{\sqrt{14}}x + \frac{3}{\sqrt{14}}y - \frac{1}{\sqrt{14}}z = \frac{5}{\sqrt{14}}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$, and $\frac{-1}{\sqrt{14}}$ and

the distance of normal from the origin is $\frac{5}{\sqrt{14}}$ units. (d) 5y + 8 = 0

$$\Rightarrow 0x - 5y + 0z = 8 \dots (1)$$

The direction ratios of normal are 0, -5, and 0.

$$\therefore \sqrt{0 + \left(-5\right)^2 + 0} = 5$$

Dividing both sides of equation (1) by 5, we obtain

$$-y = \frac{8}{5}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

Therefore, the direction cosines of the normal to the plane are 0, -1, and 0 and the

distance of normal from the origin is
$$\frac{8}{5}$$
 units.

Question 2:

Find the vector equation of a plane which is at a distance of 7 units from the origin and

normal to the vector
$$3\hat{i} + 5\hat{j} - 6\hat{k}$$
.

Answer

The normal vector is, $\vec{n} = 3\hat{i} + 5\hat{j} - 6\hat{k}$

$$\therefore \hat{n} = \frac{\vec{n}}{\left|\vec{n}\right|} = \frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{(3)^2 + (5)^2 + (6)^2}} = \frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{70}}$$

It is known that the equation of the plane with position vector \vec{r} is given by, $\vec{r} \cdot \hat{n} = d$

$$\Rightarrow \hat{r} \cdot \left(\frac{3\hat{i} + 5\hat{j} - 6\hat{k}}{\sqrt{70}}\right) = 7$$

This is the vector equation of the required plane.

Question 3:

Find the Cartesian equation of the following planes:

(a)
$$\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 2$$
 (b) $\vec{r} \cdot (2\hat{i} + 3\hat{j} - 4\hat{k}) = 1$
(c) $\vec{r} \cdot [(s - 2t)\hat{i} + (3 - t)\hat{j} + (2s + t)\hat{k}] = 15$
Answer

(a) It is given that equation of the plane is

$$\vec{r} \cdot \left(\hat{i} + \hat{j} - \hat{k}\right) = 2 \qquad \dots (1)$$

For any arbitrary point P (x, y, z) on the plane, position vector \vec{r} is given by,

$$\vec{r} = x\hat{i} + y\hat{j} - z\hat{k}$$

Substituting the value of \vec{r} in equation (1), we obtain

$$(x\hat{i} + y\hat{j} - z\hat{k})\cdot(\hat{i} + \hat{j} - \hat{k}) = 2$$

 $\Rightarrow x + y - z = 2$

This is the Cartesian equation of the plane.

(b)
$$\vec{r} \cdot \left(2\hat{i} + 3\hat{j} - 4\hat{k}\right) = 1$$
 ...(1)

For any arbitrary point P (x, y, z) on the plane, position vector \vec{r} is given by,

$$\vec{r} = x\hat{i} + y\hat{j} - z\hat{k}$$

Substituting the value of \vec{r} in equation (1), we obtain

$$(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} + 3\hat{j} - 4\hat{k}) = 1 \Rightarrow 2x + 3y - 4z = 1$$

This is the Cartesian equation of the plane.

(c)
$$\vec{r} \cdot \left[(s-2t)\hat{i} + (3-t)\hat{j} + (2s+t)\hat{k} \right] = 15$$
 ...(1)

For any arbitrary point P (x, y, z) on the plane, position vector \vec{r} is given by,

$$\vec{r} = x\hat{i} + y\hat{j} - z\hat{k}$$

Substituting the value of \vec{r} in equation (1), we obtain

$$(x\hat{i} + y\hat{j} - z\hat{k}) \cdot [(s - 2t)\hat{i} + (3 - t)\hat{j} + (2s + t)\hat{k}] = 15 \Rightarrow (s - 2t)x + (3 - t)y + (2s + t)z = 15$$

This is the Cartesian equation of the given plane.

Question 4:

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

(a)
$$2x+3y+4z-12=0$$
 (b) $3y+4z-6=0$

(c)
$$x + y + z = 1$$
 (d) $5y + 8 = 0$

Answer

(a) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1) .

2x + 3y + 4z - 12 = 0

$$\Rightarrow 2x + 3y + 4z = 12 \dots (1)$$

The direction ratios of normal are 2, 3, and 4.

$$\therefore \sqrt{(2)^2 + (3)^2 + (4)^2} = \sqrt{29}$$

Dividing both sides of equation (1) by $\sqrt{29}$, we obtain

$$\frac{2}{\sqrt{29}}x + \frac{3}{\sqrt{29}}y + \frac{4}{\sqrt{29}}z = \frac{12}{\sqrt{29}}$$

This equation is of the form lx + my + nz = d, where *l*, *m*, *n* are the direction cosines of normal to the plane and *d* is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

Therefore, the coordinates of the foot of the perpendicular are

$$\left(\frac{2}{\sqrt{29}},\frac{12}{\sqrt{29}},\frac{3}{\sqrt{29}},\frac{12}{\sqrt{29}},\frac{4}{\sqrt{29}},\frac{12}{\sqrt{29}}\right)$$
 i.e., $\left(\frac{24}{29},\frac{36}{49},\frac{48}{29}\right)$.

(b) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, x_2)

$$y_1, z_1$$
).
 $3y + 4z - 6 = 0$

$$\Rightarrow 0x + 3y + 4z = 6...(1)$$

The direction ratios of the normal are 0, 3, and 4.

$$\therefore \sqrt{0+3^2+4^2} = 5$$

Dividing both sides of equation (1) by 5, we obtain

$$0x + \frac{3}{5}y + \frac{4}{5}z = \frac{6}{5}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(*Id*, *md*, *nd*).

Therefore, the coordinates of the foot of the perpendicular are

$$\left(0, \frac{3}{5}, \frac{6}{5}, \frac{4}{5}, \frac{6}{5}\right)$$
 i.e., $\left(0, \frac{18}{25}, \frac{24}{25}\right)$.

(c) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, x_2)

$$y_1, z_1).$$

$$x + y + z = 1 \dots (1)$$

The direction ratios of the normal are 1, 1, and 1.

$$\therefore \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

Dividing both sides of equation (1) by $\sqrt{3}$, we obtain

$$\frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = \frac{1}{\sqrt{3}}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

(*Id*, *md*, *nd*).

Therefore, the coordinates of the foot of the perpendicular are

$$\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$$
 i.e., $\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$.

(d) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_1, y_1, z_1) .

$$5y + 8 = 0$$

$$\Rightarrow 0x - 5y + 0z = 8 \dots (1)$$

The direction ratios of the normal are 0, -5, and 0.

$$\therefore \sqrt{0 + \left(-5\right)^2 + 0} = 5$$

Dividing both sides of equation (1) by 5, we obtain

$$-y = \frac{8}{5}$$

This equation is of the form lx + my + nz = d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.

The coordinates of the foot of the perpendicular are given by

Therefore, the coordinates of the foot of the perpendicular are

$$\left(0,-1\left(\frac{8}{5}\right),0\right)$$
 i.e., $\left(0,-\frac{8}{5},0\right)$.

Question 5:

Find the vector and Cartesian equation of the planes

(a) that passes through the point (1, 0, –2) and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$.

(b) that passes through the point (1, 4, 6) and the normal vector to the plane is

$$\hat{i} - 2\hat{j} + \hat{k}$$

Answer

(a) The position vector of point (1, 0, -2) is
$$\vec{a} = \hat{i} - 2\hat{k}$$

The normal vector \vec{N} perpendicular to the plane is $\vec{N}=\hat{i}+\hat{j}-\hat{k}$

The vector equation of the plane is given by, $(\vec{r} - \vec{a}) \cdot \vec{N} = 0$

$$\Rightarrow \left[\vec{r} - \left(\hat{i} - 2\hat{k}\right)\right] \cdot \left(\hat{i} + \hat{j} - \hat{k}\right) = 0 \qquad \dots(1)$$

 \vec{r} is the position vector of any point P (x, y, z) in the plane.

$$\therefore \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Therefore, equation (1) becomes

$$\begin{bmatrix} \left(x\hat{i}+y\hat{j}+z\hat{k}\right)-\left(\hat{i}-2\hat{k}\right)\end{bmatrix} \cdot \left(\hat{i}+\hat{j}-\hat{k}\right) = 0$$

$$\Rightarrow \begin{bmatrix} (x-1)\hat{i}+y\hat{j}+(z+2)\hat{k}\end{bmatrix} \cdot \left(\hat{i}+\hat{j}-\hat{k}\right) = 0$$

$$\Rightarrow (x-1)+y-(z+2)=0$$

$$\Rightarrow x+y-z-3=0$$

$$\Rightarrow x+y-z=3$$

This is the Cartesian equation of the required plane.

(**b**) The position vector of the point (1, 4, 6) is $\vec{a} = \hat{i} + 4\hat{j} + 6\hat{k}$

The normal vector \vec{N} perpendicular to the plane is $\vec{N}=\hat{i}-2\hat{j}+\hat{k}$

The vector equation of the plane is given by, $(\vec{r} - \vec{a}).\vec{N} = 0$

$$\Rightarrow \left[\vec{r} - \left(\hat{i} + 4\hat{j} + 6\hat{k}\right)\right] \cdot \left(\hat{i} - 2\hat{j} + \hat{k}\right) = 0 \qquad \dots(1)$$

 \vec{r} is the position vector of any point P (x, y, z) in the plane.

$$\therefore \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Therefore, equation (1) becomes

$$\begin{bmatrix} \left(x\hat{i}+y\hat{j}+z\hat{k}\right) - \left(\hat{i}+4\hat{j}+6\hat{k}\right) \end{bmatrix} \cdot \left(\hat{i}-2\hat{j}+\hat{k}\right) = 0 \\ \Rightarrow \begin{bmatrix} (x-1)\hat{i}+(y-4)\hat{j}+(z-6)\hat{k} \end{bmatrix} \cdot \left(\hat{i}-2\hat{j}+\hat{k}\right) = 0 \\ \Rightarrow (x-1)-2(y-4)+(z-6) = 0 \\ \Rightarrow x-2y+z+1=0 \end{bmatrix}$$

This is the Cartesian equation of the required plane.

Question 6:

Find the equations of the planes that passes through three points.

(a) The given points are A (1, 1, -1), B (6, 4, -5), and C (-4, -2, 3).

 $\begin{vmatrix} 1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3 \end{vmatrix} = (12 - 10) - (18 - 20) - (-12 + 16)$ = 2 + 2 - 4= 0

Since A, B, C are collinear points, there will be infinite number of planes passing through the given points.

(b) The given points are A (1, 1, 0), B (1, 2, 1), and C (-2, 2, -1).

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1 \end{vmatrix} = (-2-2) - (2+2) = -8 \neq 0$$

Therefore, a plane will pass through the points A, B, and C.

It is known that the equation of the plane through the points, (x_1, y_1, z_1) , (x_2, y_2, z_2) , and

$$\begin{pmatrix} x_3, y_3, z_3 \end{pmatrix}, \text{ is} \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x - 1 & y - 1 & z \\ 0 & 1 & 1 \\ -3 & 1 & -1 \end{vmatrix} = 0 \Rightarrow (-2)(x - 1) - 3(y - 1) + 3z = 0 \Rightarrow -2x - 3y + 3z + 2 + 3 = 0 \Rightarrow -2x - 3y + 3z = -5 \Rightarrow 2x + 3y - 3z = 5$$

This is the Cartesian equation of the required plane.

Question 7:

Find the intercepts cut off by the plane 2x + y - z = 5Answer

2x + y - z = 5 ...(1)

Dividing both sides of equation (1) by 5, we obtain

$$\frac{2}{5}x + \frac{y}{5} - \frac{z}{5} = 1$$

$$\Rightarrow \frac{x}{5} + \frac{y}{5} + \frac{z}{-5} = 1 \qquad \dots (2)$$

It is known that the equation of a plane in intercept form is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, where *a*, *b*, *c* are the intercepts cut off by the plane at *x*, *y*, and *z* axes respectively. Therefore, for the given equation,

$$a = \frac{5}{2}, b = 5$$
, and $c = -5$

Thus, the intercepts cut off by the plane are $\frac{5}{2}$, 5, and -5.

Question 8:

Find the equation of the plane with intercept 3 on the *y*-axis and parallel to ZOX plane.

Answer

The equation of the plane ZOX is

y = 0

Any plane parallel to it is of the form, y = a

Since the *y*-intercept of the plane is 3,

∴ *a* = 3

Thus, the equation of the required plane is y = 3

```
Question 9:
```

Find the equation of the plane through the intersection of the planes

3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and the point (2, 2, 1)

Answer

The equation of any plane through the intersection of the planes,

$$3x - y + 2z - 4 = 0 \text{ and } x + y + z - 2 = 0, \text{ is}$$

(3x - y + 2z - 4) + \alpha (x + y + z - 2) = 0, where \alpha \in R ...(1)

The plane passes through the point (2, 2, 1). Therefore, this point will satisfy equation (1).

$$\therefore (3 \times 2 - 2 + 2 \times 1 - 4) + \alpha (2 + 2 + 1 - 2) = 0$$
$$\Rightarrow 2 + 3\alpha = 0$$
$$\Rightarrow \alpha = -\frac{2}{3}$$

Substituting
$$\alpha = -\frac{2}{3}$$
 in equation (1), we obtain
 $(3x - y + 2z - 4) - \frac{2}{3}(x + y + z - 2) = 0$
 $\Rightarrow 3(3x - y + 2z - 4) - 2(x + y + z - 2) = 0$
 $\Rightarrow (9x - 3y + 6z - 12) - 2(x + y + z - 2) = 0$
 $\Rightarrow 7x - 5y + 4z - 8 = 0$

This is the required equation of the plane.

Question 10:

Find the vector equation of the plane passing through the intersection of the planes

$$\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 7$$
, $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$ and through the point (2, 1, 3)
Answer

The equations of the planes are $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 7$ and $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) = 9$ $\Rightarrow \vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) - 7 = 0$...(1) $\vec{r} \cdot (2\hat{i} + 5\hat{j} + 3\hat{k}) - 9 = 0$...(2)

The equation of any plane through the intersection of the planes given in equations (1) and (2) is given by,

$$\left[\vec{r}\cdot\left(2\hat{i}+2\hat{j}-3\hat{k}\right)-7\right]+\lambda\left[\vec{r}\cdot\left(2\hat{i}+5\hat{j}+3\hat{k}\right)-9\right]=0\,\text{, where }\lambda\in R$$

Page 31 of 58

$$\vec{r} \cdot \left[\left(2\hat{i} + 2\hat{j} - 3\hat{k} \right) + \lambda \left(2\hat{i} + 5\hat{j} + 3\hat{k} \right) \right] = 9\lambda + 7$$

$$\vec{r} \cdot \left[\left(2 + 2\lambda \right)\hat{i} + \left(2 + 5\lambda \right)\hat{j} + \left(3\lambda - 3 \right)\hat{k} \right] = 9\lambda + 7 \qquad \dots (3)$$

The plane passes through the point (2, 1, 3). Therefore, its position vector is given by, $\vec{r} = 2\hat{i} + 2\hat{j} + 3\hat{k}$

Substituting in equation (3), we obtain

$$\begin{aligned} &\left(2\hat{i}+\hat{j}-3\hat{k}\right) \cdot \left[\left(2+2\lambda\right)\hat{i}+\left(2+5\lambda\right)\hat{j}+\left(3\lambda-3\right)\hat{k}\right] = 9\lambda+7\\ \Rightarrow &\left(2+2\lambda\right)+\left(2+5\lambda\right)+\left(3\lambda-3\right) = 9\lambda+7\\ \Rightarrow &18\lambda-3 = 9\lambda+7\\ \Rightarrow &9\lambda = 10\\ \Rightarrow &\lambda = \frac{10}{9}\end{aligned}$$

Substituting
$$\lambda = \frac{10}{9}$$
 in equation (3), we obtain
 $\vec{r} \cdot \left(\frac{38}{9}\hat{i} + \frac{68}{9}\hat{j} + \frac{3}{9}\hat{k}\right) = 17$
 $\Rightarrow \vec{r} \cdot \left(38\hat{i} + 68\hat{j} + 3\hat{k}\right) = 153$
This is the vector equation of the required plane.

Question 11:

Find the equation of the plane through the line of intersection of the planes

x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0Answer

The equation of the plane through the intersection of the planes, x + y + z = 1 and

$$2x + 3y + 4z = 5, \text{ is}$$

(x + y + z - 1) + λ (2x + 3y + 4z - 5) = 0
 \Rightarrow (2 λ + 1)x + (3 λ + 1)y + (4 λ + 1)z - (5 λ + 1) = 0 ...(1)

The direction ratios, a_1 , b_1 , c_1 , of this plane are $(2\lambda + 1)$, $(3\lambda + 1)$, and $(4\lambda + 1)$.

The plane in equation (1) is perpendicular to x - y + z = 0

Its direction ratios, a_2 , b_2 , c_2 , are 1, -1, and 1.

Since the planes are perpendicular,

$$a_1a_2 + b_1b_2 + c_1c_2 = 0$$

$$\Rightarrow (2\lambda + 1) - (3\lambda + 1) + (4\lambda + 1) = 0$$

$$\Rightarrow 3\lambda + 1 = 0$$

$$\Rightarrow \lambda = -\frac{1}{3}$$

Substituting $\lambda = -\frac{1}{3}$ in equation (1), we obtain $\frac{1}{3}x - \frac{1}{3}z + \frac{2}{3} = 0$ $\Rightarrow x - z + 2 = 0$

This is the required equation of the plane.

Question 12:

Find the angle between the planes whose vector equations are

$$\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5 \text{ and } \vec{r} \cdot (3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$$

Answer

The equations of the given planes are $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$ and $\vec{r} \cdot (3\hat{i} - 3\hat{j} + 5\hat{k}) = 3$

It is known that if \vec{n}_1 and \vec{n}_2 are normal to the planes, $\vec{r} \cdot \vec{n}_1 = d_1$ and $\vec{r} \cdot \vec{n}_2 = d_2$, then the angle between them, Q, is given by,

$$\cos Q = \frac{\left| \vec{n}_{1} \cdot \vec{n}_{2} \right|}{\left| \vec{n}_{1} \right| \left| \vec{n}_{2} \right|} \qquad \dots (1)$$

Here, $\vec{n}_1 = 2\hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{n}_2 = 3\hat{i} - 3\hat{j} + 5\hat{k}$

$$\therefore \vec{n}_1 \cdot \vec{n}_2 = (2\hat{i} + 2\hat{j} - 3\hat{k})(3\hat{i} - 3\hat{j} + 5\hat{k}) = 2.3 + 2.(-3) + (-3).5 = -15$$
$$|\vec{n}_1| = \sqrt{(2)^2 + (2)^2 + (-3)^2} = \sqrt{17}$$
$$|\vec{n}_2| = \sqrt{(3)^2 + (-3)^2 + (5)^2} = \sqrt{43}$$

Substituting the value of $\vec{n} \cdot \vec{n}_2$, $|\vec{n}_1|$ and $|\vec{n}_2|$ in equation (1), we obtain

$$\cos Q = \left| \frac{-15}{\sqrt{17} \cdot \sqrt{43}} \right|$$
$$\Rightarrow \cos Q = \frac{15}{\sqrt{731}}$$
$$\Rightarrow \cos Q^{-1} = \left(\frac{15}{\sqrt{731}} \right)$$

Question 13:

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

- (a) 7x+5y+6z+30=0 and 3x-y-10z+4=0
- (b) 2x + y + 3z 2 = 0 and x 2y + 5 = 0
- (c) 2x-2y+4z+5=0 and 3x-3y+6z-1=0
- (d) 2x y + 3z 1 = 0 and 2x y + 3z + 3 = 0
- (e) 4x + 8y + z 8 = 0 and y + z 4 = 0

Answer

The direction ratios of normal to the plane, $L_1: a_1x + b_1y + c_1z = 0$, are a_1, b_1, c_1 and

$$L_2: a_1x + b_2y + c_2z = 0$$
 are a_2, b_2, c_2

$$L_1 \parallel L_2$$
, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
 $L_1 \perp L_2$, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

The angle between L_1 and L_2 is given by,

$$Q = \cos^{-1} \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2 \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}}$$

(a) The equations of the planes are 7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0Here, $a_1 = 7$, $b_1 = 5$, $c_1 = 6$

i

$$a_2 = 3, b_2 = -1, c_2 = -10$$

 $a_1a_2 + b_1b_2 + c_1c_2 = 7 \times 3 + 5 \times (-1) + 6 \times (-10) = -44 \neq 0$

Therefore, the given planes are not perpendicular.

$$\frac{a_1}{a_2} = \frac{7}{3}, \frac{b_1}{b_2} = \frac{5}{-1} = -5, \frac{c_1}{c_2} = \frac{6}{-10} = \frac{-3}{5}$$

It can be seen that, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

Therefore, the given planes are not parallel.

The angle between them is given by,

$$Q = \cos^{-1} \left| \frac{7 \times 3 + 5 \times (-1) + 6 \times (-10)}{\sqrt{(7)^2 + (5)^2 + (6)^2} \times \sqrt{(3)^2 + (-1)^2 + (-10)^2}} \right|$$
$$= \cos^{-1} \left| \frac{21 - 5 - 60}{\sqrt{110} \times \sqrt{110}} \right|$$
$$= \cos^{-1} \frac{44}{110}$$
$$= \cos^{-1} \frac{2}{5}$$

(b) The equations of the planes are 2x + y + 3z - 2 = 0 and x - 2y + 5 = 0

Here,
$$a_1 = 2$$
, $b_1 = 1$, $c_1 = 3$ and $a_2 = 1$, $b_2 = -2$, $c_2 = 0$
 $\therefore a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 1 + 1 \times (-2) + 3 \times 0 = 0$

Thus, the given planes are perpendicular to each other.

(c) The equations of the given planes are 2x-2y+4z+5=0 and 3x-3y+6z-1=0

Here,
$$a_1 = 2, b_1 - 2, c_1 = 4$$
 and

$$a_2 = 3, b_2 = -3, c_2 = 6$$
 $a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 3 + (-2)(-3) + 4 \times 6 = 6 + 6 + 24 = 36 \neq 0$

Thus, the given planes are not perpendicular to each other.

$$\frac{a_1}{a_2} = \frac{2}{3}, \frac{b_1}{b_2} = \frac{-2}{-3} = \frac{2}{3} \text{ and } \frac{c_1}{c_2} = \frac{4}{6} = \frac{2}{3}$$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Thus, the given planes are parallel to each other.

(d) The equations of the planes are 2x - y + 3z - 1 = 0 and 2x - y + 3z + 3 = 0

Here,
$$a_1 = 2$$
, $b_1 = -1$, $c_1 = 3$ and $a_2 = 2$, $b_2 = -1$, $c_2 = 3$

$$\frac{a_1}{a_2} = \frac{2}{2} = 1$$
, $\frac{b_1}{b_2} = \frac{-1}{-1} = 1$ and $\frac{c_1}{c_2} = \frac{3}{3} = 1$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Thus, the given lines are parallel to each other.

(e) The equations of the given planes are 4x+8y+z-8=0 and y+z-4=0

Here,
$$a_1 = 4$$
, $b_1 = 8$, $c_1 = 1$ and $a_2 = 0$, $b_2 = 1$, $c_2 = 1$
 $a_1a_2 + b_1b_2 + c_1c_2 = 4 \times 0 + 8 \times 1 + 1 = 9 \neq 0$

Therefore, the given lines are not perpendicular to each other.

$$\frac{a_1}{a_2} = \frac{4}{0}, \ \frac{b_1}{b_2} = \frac{8}{1} = 8, \ \frac{c_1}{c_2} = \frac{1}{1} = 1$$

$$\therefore \ \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Therefore, the given lines are not parallel to each other.

The angle between the planes is given by,

$$Q = \cos^{-1} \left| \frac{4 \times 0 + 8 \times 1 + 1 \times 1}{\sqrt{4^2 + 8^2 + 1^2} \times \sqrt{0^2 + 1^2 + 1^2}} \right| = \cos^{-1} \left| \frac{9}{9 \times \sqrt{2}} \right| = \cos^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$$

Question 14:

In the following cases, find the distance of each of the given points from the corresponding given plane.

Point Plane

(a)
$$(0, 0, 0)$$
 $3x - 4y + 12z = 3$

- (b) (3, -2, 1) 2x y + 2z + 3 = 0
- (c) (2, 3, -5) x+2y-2z=9
- (d) (-6, 0, 0) 2x 3y + 6z 2 = 0

Answer

It is known that the distance between a point, $p(x_1, y_1, z_1)$, and a plane, Ax + By + Cz = D, is given by,

$$d = \left| \frac{Ax_1 + By_1 + Cz_1 - D}{\sqrt{A^2 + B^2 + C^2}} \right| \qquad \dots (1)$$

(a) The given point is (0, 0, 0) and the plane is 3x - 4y + 12z = 3

$$\therefore d = \left| \frac{3 \times 0 - 4 \times 0 + 12 \times 0 - 3}{\sqrt{(3)^2 + (-4)^2 + (12)^2}} \right| = \frac{3}{\sqrt{169}} = \frac{3}{13}$$

(b) The given point is (3, -2, 1) and the plane is 2x - y + 2z + 3 = 0

$$d = \left| \frac{2 \times 3 - (-2) + 2 \times 1 + 3}{\sqrt{(2)^2 + (-1)^2 + (2)^2}} \right| = \left| \frac{13}{3} \right| = \frac{13}{3}$$

(c) The given point is (2, 3, -5) and the plane is x+2y-2z=9

$$\therefore d = \left| \frac{2 + 2 \times 3 - 2(-5) - 9}{\sqrt{(1)^2 + (2)^2 + (-2)^2}} \right| = \frac{9}{3} = 3$$

(d) The given point is (-6, 0, 0) and the plane is 2x-3y+6z-2=0

$$d = \left| \frac{2(-6) - 3 \times 0 + 6 \times 0 - 2}{\sqrt{(2)^2 + (-3)^2 + (6)^2}} \right| = \left| \frac{-14}{\sqrt{49}} \right| = \frac{14}{7} = 2$$

Miscellaneous Solutions

Question 1:

Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, -1), (4, 3, -1).

Answer

Let OA be the line joining the origin, O (0, 0, 0), and the point, A (2, 1, 1).

Also, let BC be the line joining the points, B (3, 5, -1) and C (4, 3, -1).

The direction ratios of OA are 2, 1, and 1 and of BC are (4 - 3) = 1, (3 - 5) = -2, and

$$(-1 + 1) = 0$$

OA is perpendicular to BC, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$

 $\therefore a_1a_2 + b_1b_2 + c_1c_2 = 2 \times 1 + 1 (-2) + 1 \times 0 = 2 - 2 = 0$

Thus, OA is perpendicular to BC.

Question 2:

If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_1n_2 - m_2n_1$, $n_1l_2 - n_2l_1$, $l_1m_2 - l_2m_1$.

Answer

It is given that l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two mutually perpendicular lines. Therefore,

$$l_{1}l_{2} + m_{1}m_{2} + n_{1}n_{2} = 0 \qquad \dots(1)$$

$$l_{1}^{2} + m_{1}^{2} + n_{1}^{2} = 1 \qquad \dots(2)$$

$$l_{2}^{2} + m_{2}^{2} + n_{2}^{2} = 1 \qquad \dots(3)$$

Let *I*, *m*, *n* be the direction cosines of the line which is perpendicular to the line with direction cosines I_1 , m_1 , n_1 and I_2 , m_2 , n_2 .

$$: ll_{1} + mm_{1} + mn_{1} = 0 ll_{2} + mm_{2} + mn_{2} = 0 : \frac{l}{m_{1}n_{2} - m_{2}n_{1}} = \frac{m}{n_{1}l_{2} - n_{2}l_{1}} = \frac{n}{l_{1}m_{2} - l_{2}m_{l}} \Rightarrow \frac{l^{2}}{(m_{1}n_{2} - m_{2}n_{1})^{2}} = \frac{m^{2}}{(n_{1}l_{2} - n_{2}l_{1})^{2}} = \frac{n^{2}}{(l_{1}m_{2} - l_{2}m_{l})^{2}} \Rightarrow \frac{l^{2}}{(m_{1}n_{2} - m_{2}n_{1})^{2}} = \frac{m^{2}}{(n_{1}l_{2} - n_{2}l_{1})^{2}} = \frac{n^{2}}{(l_{1}m_{2} - l_{2}m_{2})^{2}} = \frac{l^{2} + m^{2} + n^{2}}{(m_{1}n_{2} - m_{2}n_{1})^{2} + (n_{1}l_{2} - n_{2}l_{1})^{2} + (l_{1}m_{2} - l_{2}m_{l})^{2}} \qquad ...(4)$$

I, *m*, *n* are the direction cosines of the line.

$$\therefore l^2 + m^2 + n^2 = 1 \dots (5)$$

It is known that,

$$\binom{l_1^2 + m_1^2 + n_1^2}{l_2^2 + m_2^2 + n_2^2} - \binom{l_1 l_2 + m_1 m_2 + n_1 n_2}{l_2^2}$$

= $(m_1 n_2 - m_2 n_1)^2 + (n_1 l_2 - n_2 l_1)^2 + (l_1 m_2 - l_2 m_1)^2$

From (1), (2), and (3), we obtain

$$\Rightarrow 1.1 - 0 = (m_1 n_2 + m_2 n_1)^2 + (n_1 l_2 - n_2 l_1)^2 + (l_1 m_2 - l_2 m_1)^2$$

$$(m_1 n_2 - m_2 n_1)^2 + (n_1 l_2 - n_2 l_1)^2 + (l_1 m_2 - l_2 m_1)^2 = 1 \qquad \dots (6)$$

Substituting the values from equations (5) and (6) in equation (4), we obtain

$$\frac{l^2}{\left(m_1n_2 - m_2n_1\right)^2} = \frac{m^2}{\left(n_2l_2 - n_2l_1\right)^2} = \frac{n^2}{\left(l_1m_2 - l_2m_1\right)^2} = 1$$

$$\implies l = m_1n_2 - m_2n_1, m = n_1l_2 - n_2l_1, n = l_1m_2 - l_2m_1$$

Thus, the direction cosines of the required line are $m_1n_2 - m_2n_1$, $n_1l_2 - n_2l_1$, and $l_1m_2 - l_2m_1$.

Question 3:

Find the angle between the lines whose direction ratios are a, b, c and b - c,

Answer

The angle *Q* between the lines with direction cosines, *a*, *b*, *c* and b - c, c - a, a - b, is given by,

$$\cos Q = \left| \frac{a(b-c) + b(c-a) + c(a-b)}{\sqrt{a^2 + b^2 + c^2} + \sqrt{(b-c)^2 + (c-a)^2 + (a-b)^2}} \right|$$

$$\Rightarrow \cos Q = 0$$

$$\Rightarrow Q = \cos^{-1} 0$$

$$\Rightarrow Q = 90^{\circ}$$

Thus, the angle between the lines is 90°.

Question 4:

Find the equation of a line parallel to x-axis and passing through the origin.

Answer

The line parallel to *x*-axis and passing through the origin is *x*-axis itself.

Let A be a point on x-axis. Therefore, the coordinates of A are given by (a, 0, 0), where

Direction ratios of OA are (a - 0) = a, 0, 0

The equation of OA is given by,

$$\frac{x-0}{a} = \frac{y-0}{0} = \frac{z-0}{0}$$
$$\Rightarrow \frac{x}{1} = \frac{y}{0} = \frac{z}{0} = a$$

Thus, the equation of line parallel to *x*-axis and passing through origin is

 $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$

Question 5:

If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, -6)

2) respectively, then find the angle between the lines AB and CD.

Answer

The coordinates of A, B, C, and D are (1, 2, 3), (4, 5, 7), (-4, 3, -6), and

(2, 9, 2) respectively.

The direction ratios of AB are (4 - 1) = 3, (5 - 2) = 3, and (7 - 3) = 4

The direction ratios of CD are (2 - (-4)) = 6, (9 - 3) = 6, and (2 - (-6)) = 8

It can be seen that, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{1}{2}$

Therefore, AB is parallel to CD.

Thus, the angle between AB and CD is either 0° or 180°.

sQuestion 6:

If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular, find the value

of *k*.

Answer

The direction of ratios of the lines, $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$, are -3, 2k, 2 and 3k, 1, -5 respectively. It is known that two lines with direction ratios, a_1 , b_1 , c_1 and a_2 , b_2 , c_2 , are perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $\therefore -3(3k) + 2k \times 1 + 2(-5) = 0$ $\Rightarrow -9k + 2k - 10 = 0$ $\Rightarrow k = \frac{-10}{7}$ Therefore, for $k = -\frac{10}{7}$, the given lines are perpendicular to each other.

Question 7:

Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the

plane
$$\vec{r} \cdot (\hat{i} + 2\hat{j} - 5\hat{k}) + 9 = 0$$

Answer

Answei

The position vector of the point (1, 2, 3) is $\vec{r_1} = \hat{i} + 2\hat{j} + 3\hat{k}$

The direction ratios of the normal to the plane, $\vec{r} \cdot (\hat{i} + 2\hat{j} - 5\hat{k}) + 9 = 0$, are 1, 2, and -5 and the normal vector is $\vec{N} = \hat{i} + 2\hat{j} - 5\hat{k}$

The equation of a line passing through a point and perpendicular to the given plane is

given by,
$$\vec{l} = \vec{r} + \lambda \vec{N}, \ \lambda \in R$$

 $\Rightarrow \vec{l} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} + 2\hat{j} - 5\hat{k})$

Question 8:

Find the equation of the plane passing through (a, b, c) and parallel to the plane

$$\vec{r} \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) = 2$$

Answer

Any plane parallel to the plane, $\vec{r_1} \cdot (\hat{i} + \hat{j} + \hat{k}) = 2$, is of the form $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = \lambda$...(1)

The plane passes through the point (a, b, c). Therefore, the position vector \vec{r} of this

point is
$$\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$$

Therefore, equation (1) becomes
 $\left(a\hat{i} + b\hat{j} + c\hat{k}\right) \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) = \lambda$

Substituting $\lambda = a + b + c$ in equation (1), we obtain

$$\vec{r} \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) = a + b + c \qquad \dots (2)$$

This is the vector equation of the required plane.

Substituting $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ in equation (2), we obtain $(x\hat{i} + y\hat{j} + z\hat{k})\cdot(\hat{i} + \hat{j} + \hat{k}) = a + b + c$ $\Rightarrow x + y + z = a + b + c$

Question 9:

Find the shortest distance between lines $\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda(\hat{i} - 2\hat{j} + 2\hat{k})$

and
$$\vec{r} = -4\hat{i} - \hat{k} + \mu \left(3\hat{i} - 2\hat{j} - 2\hat{k} \right).$$

Answer

The given lines are

$$\vec{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda \left(\hat{i} - 2\hat{j} + 2\hat{k}\right) \qquad \dots(1)$$

$$\vec{r} = -4\hat{i} - \hat{k} + \mu \left(3\hat{i} - 2\hat{j} - 2\hat{k}\right) \qquad \dots(2)$$

It is known that the shortest distance between two lines, $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \lambda \vec{b}_2$, is given by

$$d = \frac{\left| \left(\vec{b}_1 \times \vec{b}_2 \right) \cdot \left(\vec{a}_2 - \vec{a}_1 \right) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \qquad \dots (3)$$

Comparing $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \lambda \vec{b}_2$ to equations (1) and (2), we obtain

$$\begin{aligned} \vec{a}_{1} &= 6\hat{i} + 2\hat{j} + 2\hat{k} \\ \vec{b}_{1} &= \hat{i} - 2\hat{j} + 2\hat{k} \\ \vec{a}_{2} &= -4\hat{i} - \hat{k} \\ \vec{b}_{2} &= 3\hat{i} - 2\hat{j} - 2\hat{k} \\ \Rightarrow \vec{a}_{2} - \vec{a}_{1} &= \left(-4\hat{i} - \hat{k}\right) - \left(6\hat{i} + 2\hat{j} + 2\hat{k}\right) = -10\hat{i} - 2\hat{j} - 3\hat{k} \end{aligned}$$

Maths

$$\Rightarrow \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 3 & -2 & -2 \end{vmatrix} = (4+4)\hat{i} - (-2-6)\hat{j} + (-2+6)\hat{k} = 8\hat{i} + 8\hat{j} + 4\hat{k}$$
$$\therefore |\vec{b}_1 \times \vec{b}_2| = \sqrt{(8)^2 + (8)^2 + (4)^2} = 12$$

$$\left(\vec{b}_1 \times \vec{b}_2\right) \cdot \left(\vec{a}_2 - \vec{a}_1\right) = \left(8\hat{i} + 8\hat{j} + 4\hat{k}\right) \cdot \left(-10\hat{i} - 2\hat{j} - 3\hat{k}\right) = -80 - 16 - 12 = -108$$

Substituting all the values in equation (1), we obtain

$$d = \left| \frac{-108}{12} \right| = 9$$

Therefore, the shortest distance between the two given lines is 9 units.

Question 10:

Find the coordinates of the point where the line through (5, 1, 6) and

(3, 4, 1) crosses the YZ-plane

Answer

It is known that the equation of the line passing through the points, (x_1, y_1, z_1) and (x_2, y_2, z_2)

$$y_2, z_2$$
), is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$
The line passing through the points, (5, 1, 6) and (3, 4, 1), is given by,

$$\frac{x-5}{3-5} = \frac{y-1}{4-1} = \frac{z-6}{1-6}$$
$$\Rightarrow \frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5} = k \text{ (say)}$$
$$\Rightarrow x = 5-2k, \ y = 3k+1, \ z = 6-5k$$

Any point on the line is of the form (5 - 2k, 3k + 1, 6 - 5k).

The equation of YZ-plane is x = 0

Since the line passes through YZ-plane,

$$5 - 2k = 0$$
$$\Rightarrow k = \frac{5}{2}$$

$$\Rightarrow 3k + 1 = 3 \times \frac{5}{2} + 1 = \frac{17}{2}$$
$$6 - 5k = 6 - 5 \times \frac{5}{2} = \frac{-13}{2}$$

Therefore, the required point is $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.

Question 11:

Find the coordinates of the point where the line through (5, 1, 6) and

(3, 4, 1) crosses the ZX – plane.

Answer

It is known that the equation of the line passing through the points, (x_1, y_1, z_1) and (x_2, y_2, z_2)

 y_2, z_2), is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ The line passing through the points, (5, 1, 6) and (3, 4, 1), is given by, $x - 5 \quad y - 1 \quad z - 6$

$$\overline{3-5} = \frac{y-1}{4-1} = \frac{z-6}{1-6}$$

$$\Rightarrow \frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5} = k \text{ (say)}$$

$$\Rightarrow x = 5 - 2k, \ y = 3k + 1, \ z = 6 - 5k$$

Any point on the line is of the form (5 - 2k, 3k + 1, 6 - 5k).

Since the line passes through ZX-plane,

$$3k+1=0$$

$$\Rightarrow k = -\frac{1}{3}$$

$$\Rightarrow 5-2k = 5-2\left(-\frac{1}{3}\right) = \frac{17}{3}$$

$$6-5k = 6-5\left(-\frac{1}{3}\right) = \frac{23}{3}$$

Therefore, the required point is $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$.

Question 12:

Find the coordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane 2x + y + z = 7.

Answer

It is known that the equation of the line through the points, (x_1, y_1, z_1) and (x_2, y_2, z_2) , is

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

Since the line passes through the points, (3, -4, -5) and (2, -3, 1), its equation is given by,

$$\frac{x-3}{2-3} = \frac{y+4}{-3+4} = \frac{z+5}{1+5}$$
$$\Rightarrow \frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6} = k \text{ (say)}$$
$$\Rightarrow x = 3-k, \ y = k-4, \ z = 6k-5$$

Therefore, any point on the line is of the form (3 - k, k - 4, 6k - 5). This point lies on the plane, 2x + y + z = 7

$$\therefore 2 (3 - k) + (k - 4) + (6k - 5) = 7$$

$$\Rightarrow 5k - 3 = 7$$
$$\Rightarrow k = 2$$

Hence, the coordinates of the required point are $(3 - 2, 2 - 4, 6 \times 2 - 5)$ i.e., (1, -2, 7).

Question 13:

Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

Answer

The equation of the plane passing through the point (-1, 3, 2) is

 $a(x + 1) + b(y - 3) + c(z - 2) = 0 \dots (1)$

where, *a*, *b*, *c* are the direction ratios of normal to the plane.

It is known that two planes, $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$, are

perpendicular, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$ Plane (1) is perpendicular to the plane, x + 2y + 3z = 5 $\therefore a \cdot 1 + b \cdot 2 + c \cdot 3 = 0$ $\Rightarrow a + 2b + 3c = 0$ (2)

Also, plane (1) is perpendicular to the plane, 3x + 3y + z = 0

$$\therefore a \cdot 3 + b \cdot 3 + c \cdot 1 = 0$$

$$\Rightarrow 3a + 3b + c = 0 \qquad \dots(3)$$

From equations (2) and (3), we obtain

$$\frac{a}{2 \times 1 - 3 \times 3} = \frac{b}{3 \times 3 - 1 \times 1} = \frac{c}{1 \times 3 - 2 \times 3}$$
$$\Rightarrow \frac{a}{-7} = \frac{b}{8} = \frac{c}{-3} = k \text{ (say)}$$
$$\Rightarrow a = -7k, \ b = 8k, \ c = -3k$$

Substituting the values of *a*, *b*, and *c* in equation (1), we obtain

$$-7k(x+1) + 8k(y-3) - 3k(z-2) = 0$$

$$\Rightarrow (-7x-7) + (8y-24) - 3z + 6 = 0$$

$$\Rightarrow -7x + 8y - 3z - 25 = 0$$

$$\Rightarrow 7x - 8y + 3z + 25 = 0$$

This is the required equation of the plane.

Question 14:

If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane

 $\vec{r} \cdot (3\hat{i} + 4\hat{j} - 12\hat{k}) + 13 = 0$, then find the value of p. Answer

The position vector through the point (1, 1, *p*) is $\vec{a}_1 = \hat{i} + \hat{j} + p\hat{k}$ Similarly, the position vector through the point (-3, 0, 1) is

 $\vec{a}_2 = -4\hat{i} + \hat{k}$

The equation of the given plane is $\vec{r} \cdot (3\hat{i} + 4\hat{j} - 12\hat{k}) + 13 = 0$

It is known that the perpendicular distance between a point whose position vector is

$$\vec{a}$$
 and the plane, $\vec{r} \cdot \vec{N} = d$, is given by, $D = \frac{\left| \vec{a} \cdot \vec{N} - d \right|}{\left| \vec{N} \right|}$

Here, N = 3i + 4j - 12k and d = -13

Therefore, the distance between the point (1, 1, p) and the given plane is

$$D_{1} = \frac{\left| \left(\hat{i} + \hat{j} + p\hat{k} \right) \cdot \left(3\hat{i} + 4\hat{j} - 12\hat{k} \right) + 13 \right|}{\left| 3\hat{i} + 4\hat{j} - 12\hat{k} \right|}$$

$$\Rightarrow D_{1} = \frac{\left| 3 + 4 - 12p + 13 \right|}{\sqrt{3^{2} + 4^{2} + (-12)^{2}}}$$

$$\Rightarrow D_{1} = \frac{\left| 20 - 12p \right|}{13} \qquad \dots (1)$$

Similarly, the distance between the point (-3, 0, 1) and the given plane is

$$D_{2} = \frac{\left| \left(-3\hat{i} + \hat{k} \right) \cdot \left(3\hat{i} + 4\hat{j} - 12\hat{k} \right) + 13 \right|}{\left| 3\hat{i} + 4\hat{j} - 12\hat{k} \right|}$$

$$\Rightarrow D_{2} = \frac{\left| -9 - 12 + 13 \right|}{\sqrt{3^{2} + 4^{2} + (-12)^{2}}}$$

$$\Rightarrow D_{2} = \frac{8}{13} \qquad \dots(2)$$

It is given that the distance between the required plane and the points, (1, 1, p) and (-3, 0, 1), is equal.

$$\therefore D_1 = D_2$$

$$\Rightarrow \frac{|20 - 12p|}{13} = \frac{8}{13}$$

$$\Rightarrow 20 - 12p = 8 \text{ or } -(20 - 12p) = 8$$
$$\Rightarrow 12p = 12 \text{ or } 12p = 28$$
$$\Rightarrow p = 1 \text{ or } p = \frac{7}{3}$$

Question 15:

Find the equation of the plane passing through the line of intersection of the planes

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$$
 and $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to x-axis.

Answer

The given planes are

$$\vec{r} \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) = 1$$
$$\Rightarrow \vec{r} \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) - 1 = 0$$
$$\vec{r} \cdot \left(2\hat{i} + 3\hat{j} - \hat{k}\right) + 4 = 0$$

The equation of any plane passing through the line of intersection of these planes is

$$\begin{bmatrix} \vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 1 \end{bmatrix} + \lambda \begin{bmatrix} \vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 \end{bmatrix} = 0$$

$$\vec{r} \cdot \begin{bmatrix} (2\lambda + 1)\hat{i} + (3\lambda + 1)\hat{j} + (1 - \lambda)\hat{k} \end{bmatrix} + (4\lambda + 1) = 0 \qquad \dots (1)$$

Its direction ratios are $(2\lambda + 1)$, $(3\lambda + 1)$, and $(1 - \lambda)$.

The required plane is parallel to x-axis. Therefore, its normal is perpendicular to x-axis. The direction ratios of x-axis are 1, 0, and 0.

$$\therefore 1.(2\lambda+1) + 0(3\lambda+1) + 0(1-\lambda) = 0$$
$$\Rightarrow 2\lambda + 1 = 0$$
$$\Rightarrow \lambda = -\frac{1}{2}$$

Substituting $\lambda = -\frac{1}{2}$ in equation (1), we obtain $\Rightarrow \vec{r} \cdot \left[-\frac{1}{2} \hat{j} + \frac{3}{2} \hat{k} \right] + (-3) = 0$ $\Rightarrow \vec{r} \left(\hat{j} - 3\hat{k} \right) + 6 = 0$ Therefore, its Cartesian equation is y - 3z + 6 = 0This is the equation of the required plane.

Question 16:

If O be the origin and the coordinates of P be (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP. Answer

The coordinates of the points, O and P, are (0, 0, 0) and (1, 2, -3) respectively. Therefore, the direction ratios of OP are (1 - 0) = 1, (2 - 0) = 2, and (-3 - 0) = -3It is known that the equation of the plane passing through the point $(x_1, y_1 z_1)$ is

 $a(x-x_1)+b(y-y_1)+c(z-z_1)=0$ where, a, b, and c are the direction ratios of normal. Here, the direction ratios of normal are 1, 2, and -3 and the point P is (1, 2, -3). Thus, the equation of the required plane is

$$1(x-1)+2(y-2)-3(z+3) = 0$$

$$\Rightarrow x+2y-3z-14 = 0$$

Question 17:

Find the equation of the plane which contains the line of intersection of the planes

 $\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0$, $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0$ and which is perpendicular to the plane

$$\vec{r} \cdot \left(5\hat{i} + 3\hat{j} - 6\hat{k}\right) + 8 = 0.$$

Answer

The equations of the given planes are

$$\vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 = 0 \qquad \dots(1)$$

$$\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 = 0 \qquad \dots(2)$$

The equation of the plane passing through the line intersection of the plane given in equation (1) and equation (2) is

$$\begin{bmatrix} \vec{r} \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) - 4 \end{bmatrix} + \lambda \begin{bmatrix} \vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) + 5 \end{bmatrix} = 0$$

$$\vec{r} \cdot \begin{bmatrix} (2\lambda + 1)\hat{i} + (\lambda + 2)\hat{j} + (3 - \lambda)\hat{k} \end{bmatrix} + (5\lambda - 4) = 0 \qquad \dots (3)$$

The plane in equation (3) is perpendicular to the plane, $\vec{r} \cdot (5\hat{i}+3\hat{j}-6\hat{k})+8=0$

$$\therefore 5(2\lambda+1)+3(\lambda+2)-6(3-\lambda)=0$$
$$\Rightarrow 19\lambda-7=0$$
$$\Rightarrow \lambda = \frac{7}{19}$$

Substituting $\lambda = \frac{7}{19}$ in equation (3), we obtain $\Rightarrow \vec{r} \cdot \left[\frac{33}{19}\hat{i} + \frac{45}{19}\hat{j} + \frac{50}{19}\hat{k}\right] \frac{-41}{19} = 0$ $\Rightarrow \vec{r} \cdot \left(33\hat{i} + 45\hat{j} + 50\hat{k}\right) - 41 = 0 \qquad \dots(4)$

This is the vector equation of the required plane.

The Cartesian equation of this plane can be obtained by substituting $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ in equation (3).

$$(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (33\hat{i} + 45\hat{j} + 50\hat{k}) - 41 = 0 \Rightarrow 33x + 45y + 50z - 41 = 0$$

Question 18:

Find the distance of the point (-1, -5, -10) from the point of intersection of the line

$$\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda\left(3\hat{i} + 4\hat{j} + 2\hat{k}\right) \text{and the plane } \vec{r} \cdot \left(\hat{i} - \hat{j} + \hat{k}\right) = 5$$

Answer

The equation of the given line is

$$\vec{r} \cdot = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda \left(3\hat{i} + 4\hat{j} + 2\hat{k}\right) \qquad \dots(1)$$

The equation of the given plane is

$$\vec{r}.(\hat{i}-\hat{j}+\hat{k})=5$$
 ...(2)

Substituting the value of \vec{r} from equation (1) in equation (2), we obtain

$$\begin{bmatrix} 2\hat{i} - \hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k}) \end{bmatrix} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5$$

$$\Rightarrow \begin{bmatrix} (3\lambda + 2)\hat{i} + (4\lambda - 1)\hat{j} + (2\lambda + 2)\hat{k} \end{bmatrix} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5$$

$$\Rightarrow (3\lambda + 2) - (4\lambda - 1) + (2\lambda + 2) = 5$$

$$\Rightarrow \lambda = 0$$

Substituting this value in equation (1), we obtain the equation of the line as

$$\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k}$$

This means that the position vector of the point of intersection of the line and the plane

is
$$\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k}$$

This shows that the point of intersection of the given line and plane is given by the coordinates, (2, -1, 2). The point is (-1, -5, -10).

The distance d between the points, (2, -1, 2) and (-1, -5, -10), is

$$d = \sqrt{\left(-1-2\right)^2 + \left(-5+1\right)^2 + \left(-10-2\right)^2} = \sqrt{9+16+144} = \sqrt{169} = 13$$

Question 19:

Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes

$$\vec{r} = (\hat{i} - \hat{j} + 2\hat{k}) = 5 \text{ and } \vec{r} \cdot (3\hat{i} + \hat{j} + \hat{k}) = 6$$

Answer

Let the required line be parallel to vector \vec{b} given by,

$$\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$

The position vector of the point (1, 2, 3) is $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$

The equation of line passing through (1, 2, 3) and parallel to \vec{b} is given by,

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

$$\Rightarrow \vec{r} \left(\hat{i} + 2\hat{j} + 3\hat{k} \right) + \lambda \left(b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right) \qquad \dots(1)$$

The equations of the given planes are

$$\vec{r} \cdot (\hat{i} - \hat{j} + 2\hat{k}) = 5$$
 ...(2)
 $\vec{r} \cdot (3\hat{i} + \hat{j} + \hat{k}) = 6$...(3)

The line in equation (1) and plane in equation (2) are parallel. Therefore, the normal to the plane of equation (2) and the given line are perpendicular.

$$\Rightarrow (\hat{i} - \hat{j} + 2\hat{k}) \cdot \lambda (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}) = 0$$

$$\Rightarrow \lambda (b_1 - b_2 + 2b_3) = 0$$

$$\Rightarrow b_1 - b_2 + 2b_3 = 0 \qquad \dots (4)$$

Similarly, $(3\hat{i} + \hat{j} + \hat{k}) \cdot \lambda (b_1\hat{i} + b_2\hat{j} + b_3\hat{k}) = 0$

$$\Rightarrow \lambda (3b_1 + b_2 + b_3) = 0$$

$$\Rightarrow 3b_1 + b_2 + b_3 = 0 \qquad \dots (5)$$

From equations (4) and (5), we obtain

$$\frac{b_1}{(-1)\times 1 - 1 \times 2} = \frac{b_2}{2\times 3 - 1 \times 1} = \frac{b_3}{1\times 1 - 3(-1)}$$
$$\Rightarrow \frac{b_1}{-3} = \frac{b_2}{5} = \frac{b_3}{4}$$

Therefore, the direction ratios of \vec{b} are -3, 5, and 4.

$$\therefore \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = -3\hat{i} + 5\hat{j} + 4\hat{k}$$

Substituting the value of \vec{b} in equation (1), we obtain

$$\vec{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}\right) + \lambda\left(-3\hat{i} + 5\hat{j} + 4\hat{k}\right)$$

This is the equation of the required line.

Question 20:

Find the vector equation of the line passing through the point (1, 2, -4) and

perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ Answer

Let the required line be parallel to the vector \vec{b} given by, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

The position vector of the point (1, 2, -4) is $\vec{a} = \hat{i} + 2\hat{j} - 4\hat{k}$

The equation of the line passing through (1, 2, -4) and parallel to vector \vec{b} is

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

$$\Rightarrow \vec{r} \left(\hat{i} + 2\hat{j} - 4\hat{k} \right) + \lambda \left(b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \right) \qquad \dots(1)$$

The equations of the lines are

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \qquad \dots (2)$$
$$\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5} \qquad \dots (3)$$

Line (1) and line (2) are perpendicular to each other.

$$\therefore 3b_1 - 16b_2 + 7b_3 = 0 \qquad \dots (4)$$

Also, line (1) and line (3) are perpendicular to each other.

$$\therefore 3b_1 + 8b_2 - 5b_3 = 0 \qquad \dots (5)$$

From equations (4) and (5), we obtain

$$\frac{b_1}{(-16)(-5)-8\times7} = \frac{b_2}{7\times3-3(-5)} = \frac{b_3}{3\times8-3(-16)}$$
$$\Rightarrow \frac{b_1}{24} = \frac{b_2}{36} = \frac{b_3}{72}$$
$$\Rightarrow \frac{b_1}{2} = \frac{b_2}{3} = \frac{b_3}{6}$$

:.Direction ratios of \vec{b} are 2, 3, and 6.

$\therefore \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$

Substituting $\vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ in equation (1), we obtain $\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda (2\hat{i} + 3\hat{j} + 6\hat{k})$

This is the equation of the required line.

Question 21:

Prove that if a plane has the intercepts *a*, *b*, *c* and is at a distance of *P* units from the

origin, then
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{p^2}$$

Answer

The equation of a plane having intercepts a, b, c with x, y, and z axes respectively is given by,

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \qquad \dots(1)$$

The distance (*p*) of the plane from the origin is given by,

$$p = \left| \frac{\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1}{\sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2 + \left(\frac{1}{c}\right)^2}} \right|$$

$$\Rightarrow p = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}}$$

$$\Rightarrow p^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

Question 22:

Distance between the two planes: 2x+3y+4z = 4 and 4x+6y+8z = 12 is (A)2 units (B)4 units (C)8 units

(D)
$$\frac{2}{\sqrt{29}}$$
 units

Answer

The equations of the planes are

2x + 3y + 4z = 4 ...(1)

4x + 6y + 8z = 12

 $\Rightarrow 2x + 3y + 4z = 6 \qquad \dots (2)$

It can be seen that the given planes are parallel.

It is known that the distance between two parallel planes, $ax + by + cz = d_1$ and $ax + by + cz = d_2$, is given by,

$$D = \left| \frac{d_2 - d_1}{\sqrt{a^2 + b^2 + c^2}} \right|$$
$$\Rightarrow D = \left| \frac{6 - 4}{\sqrt{(2)^2 + (3)^2 + (4)^2}} \right|$$
$$D = \frac{2}{\sqrt{29}}$$

Thus, the distance between the lines is $\frac{2}{\sqrt{29}}$ units. Hence, the correct answer is D.

Question 23:

The planes: 2x - y + 4z = 5 and 5x - 2.5y + 10z = 6 are

(A) Perpendicular (B) Parallel (C) intersect y-axis

(C) passes through $\left(0,0,\frac{5}{4}\right)$ Answer

The equations of the planes are

$$2x - y + 4z = 5 \dots (1)$$

$$5x - 2.5y + 10z = 6 \dots (2)$$

It can be seen that,

$\frac{a_1}{a_2} = \frac{2}{5}$	
$\frac{b_1}{b_2} = \frac{-1}{-2.5} = \frac{2}{5}$	
$\frac{c_1}{c_2} = \frac{4}{10} = \frac{2}{5}$	
$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	

Therefore, the given planes are parallel. Hence, the correct answer is B.

www.ncrtsolutions.blogspot.com