MATHEMAT

Mob.: 9470844028 9546359990

Ramrajya More, Siwan (Bihar)

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XI (PQRS)

DERIVATIVES

& Their Properties

CONTENTS **Key Concept-I Exercise-I Exercise-II Exercise-III Solutions of Exercise** Page

THINGS TO REMEMBER

A function f(x) is differentiable at x = c iff $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists finitely. 1.

This limit is called the derivative or differentiation of f(x) at x = c and is denoted by f'(c).

- Geometrically the derivative of a function f(x) at a point x = c is the slope of the tangent to the 2. curve y = f(x) at the point (c, f (c)).
- If f(x) is a differentiable function, then $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ is called the differentiation of f(x) or 3. differentiation of f(x) with respect to x.
- Mechanically, $\frac{d}{dx}(f(x))$ measures the rate of change of f(x) with respect to x. 4.
- 5. Following are some standard derivatives:

(i)
$$\frac{d}{dx}(x^n) = n x^{n-1}$$

(ii)
$$\frac{d}{dx}(a^x) = a^x \log_e a, a > 0, a \ne 1$$

(iii)
$$\frac{d}{dx}(e^x) = e^x$$

(iv)
$$\frac{d}{dx}(\log_e x) = \frac{1}{x}$$

(v)
$$\frac{d}{dx}(\sin x) = \cos x$$

(vi)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(vii)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(viii)
$$\frac{d}{dx}$$
 (cot x) = $-\csc^2 x$

(ix)
$$\frac{d}{dx}$$
 (sec x) = sec x tan x

(x)
$$\frac{d}{dx}$$
 (cosec x) = -cosec x cot x

Following are the fundamental rules for differentiation: 6.

- (i) Differentiation of a constant function is zero i.e., $\frac{d}{dx}(c) = 0$
- (ii) Differentiation of a constant and a function is equal to constant times the differentiation of the function.
- (iii) If f(x) and g(x) are differentiation function, then

(a)
$$\frac{d}{dx} \{f(x) \pm g(x)\} = \frac{d}{dx} (f(x)) \pm \frac{d}{dx} (g(x))$$

(b)
$$\frac{d}{dx} \{f(x) \times g(x)\} = \frac{d}{dx} (f(x)) \times g(x) + f(x) \times \frac{d}{dx} (g(x))$$

(c)
$$\frac{d}{dx} \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x) \times \frac{d}{dx} (f(x)) - f(x) \times \frac{d}{dx} \{g(x)\}}{\{g(x)\}^2}$$

EXERCISE-1

- 1. Let f be a real valued function defined by $f(x) = x^2 + 1$. Find f'(2).
- 2. Find the derivative of $f(x) = 2x^2 + 3x 5$ at x = -1. Also, prove that f'(0) + 3f'(-1) = 0
- 3. If $f(x) = x^n$, where $n \in R$, then, the differentiation of x^n with respect to x is nx^{n-1} .
- 4. The differentiation of $\log_e x$, x > 0 is $\frac{1}{x}$
- 5. The differentiation of $\log_a x$ (a > 0, a \neq 1) with respect to x is $\frac{1}{x \log_e a}$
- 6. The differentiation of $\tan x$ with respect to x is $\sec^2 x$.
- 7. Differentiation the following function with respect to x from first principals:
 - (i) \sqrt{X}
 - (ii) $\sqrt{ax+b}$
 - (iii) $\frac{1}{ax+b}$
- 8. Differentiate xex from first principle.
- 9. Differentiate the following function w.r.t. x from first principles: $\tan \sqrt{x}$
- 10. Differentiate $x^2 \cos x$ from first principle.
- 11. Differentiate $e^{\sqrt{\tan x}}$ from first principle.
- 12. Differentiate the following function with respect to x:
 - (i) $\log_x x$
 - (ii) $e^{3 \log x}$

By: Dir. Firoz Ahmad

- (iii) $9.(3^{x})$
- 13. If $y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$, show that $\frac{dy}{dx} = y$.
- $a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_{n-1} x + a_n.$
- Find the rate at which the function $f(x) = x^4 2x^3 + 3x^2 + x + 5$ changes with respect to x. 15.
- Differentiate the following functions with respect to x : x sin x
- Differentiate the following functions w.r.t. x: 17.
 - $x^3 e^x \sin x$
 - (ii) $x^n \log_a x e^x$
- Differentiate the following functions w.r.t. $x : e^x \log \sqrt{x} \tan x$
- Differentiate the following functions w.r.t. $x : x^5 (3 6x^{-9})$ 19.
- Differentiate the following functions with respect to x: 20.
- Differentiate the following functions with respect to x: 21.
- Differentiate the following functions with respect to x: $\frac{1+3^x}{1-3^x}$ 22.
- Differentiate the following functions with respect to x : $\frac{x + \cos x}{\tan x}$ 23.
- 24. Differentiate the following functions with respect to $x : 10^x$ cosec x [log 10 - cot x]

EXERCISE-2

- If x < 2, then write the value of $\frac{d}{dx} \left(\sqrt{x^2 4x + 4} \right)$.
- If $f(x) = \frac{x^2}{|x|}$, write $\frac{d}{dx}(f(x))$. 2.
- If |x| < 1 and $y = 1 + x + x^2 + x^3 + ...$, then write the value of $\frac{dy}{dx}$.