Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XI (PQRS)

FUNCTIONS

& Their Properties

	CONTENTS
Key Concept-I	
Exercise-I	***************************************
Exercise-II	***************************************
Exercise-III	***************************************
	Solutions of Exercise
Page	***************************************

THINGS TO REMEMBER

1.
$$[-n] = -[n]$$

2.
$$[x + k] = [x] + k$$
 for any integer k.

3.
$$[-x] = -[x] - 1$$

4.
$$[x] + [-x] = \begin{cases} -1, & \text{if } x \notin Z \\ 0, & \text{if } x \in Z \end{cases}$$

5.
$$[x] - [-x] =$$

$$\begin{cases} 2[x]+1, & \text{if } x \notin \mathbb{Z} \\ 2[x], & \text{if } x \in \mathbb{Z} \end{cases}$$

6.
$$[x] \ge k \Rightarrow x \ge k$$
, where $k \in \mathbb{Z}$

7.
$$[x] \le k \Rightarrow x > k + 1$$
, where $k \in \mathbb{Z}$

8.
$$[x] > k \Rightarrow x \ge k + 1$$
, where $k \in \mathbb{Z}$

9.
$$[x] < k \Rightarrow x < k$$
, where $k \in \mathbb{Z}$

10.
$$[x + y] = [x] + [y + x - [x]]$$
 for all $x, y \in R$

11.
$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = [nx], n \in \mathbb{N}.$$

12.
$$\lceil -n \rceil = -\lfloor n \rceil$$

13.
$$\lceil -x \rceil = -\lceil x \rceil - 1$$
, where $x \in R - Z$

14.
$$\lceil -x + n \rceil = \lceil x \rceil + n$$
, where $x \in R - Z$ and $n \in Z$

15.
$$\lceil x \rceil + \lceil -x \rceil = \begin{cases} 1, & \text{if } x \notin \mathbb{Z} \\ 0, & \text{if } x \in \mathbb{Z} \end{cases}$$

16.
$$[x] - [-x] = \begin{cases} 2\lceil x \rceil - 1 & \text{if } x \notin \mathbb{Z} \\ 2\lceil x \rceil & \text{if } x \in \mathbb{Z} \end{cases}$$

12.
$$\log_a 11 = 0$$
, where $a > 0$, $a \ne 1$

13.
$$\log_a a = 1$$
, where $a > 0$, $a \ne 1$

14.
$$\log_a (xy) \log_a |x| + \log_a |y|$$
, where $a > 0$, $a \ne 1$ and $xy > 0$

15.
$$\log_a \left(\frac{x}{y}\right) \log_a |x| + \log_a |y|$$
, where $a > 0$, $a \ne 1$ and $\frac{x}{y} > 0$

16.
$$\log_a (x^n) = n \log_a |x|$$
, where $a > 0$, $a \ne 1$ and $x^n > 0$

17.
$$\log_a^n x^m = \frac{m}{n} \log_{|a|} |x|$$
, where $a > 0$, $a \ne 1$ and $x > 0$

18.
$$x^{\log_e y} = y^{\log_e x}$$
, where $x > 0$, $y > 0$, $a > 0$, $a \ne 1$

19. if
$$a > 1$$
, then the values of $f(x) = \log_a x$ increase with the increase in x i.e. $x < y \Leftrightarrow \log_a x < \log_a y$

Also,

$$\log_{a} x \begin{cases} < 0 \text{ for } 0 < x < 1 \\ = 0 \text{ for } x = 1 \\ > 0 \text{ for } x > 1 \end{cases}$$

20. If 0 < a < 1, then the values of $f(x) = \log_a x$ decrease with the increase in x i.e., $x < y \Leftrightarrow \log_a x > \log_a y$

Also,

$$\log_{a} x \begin{cases} > 0 \text{ for } 0 < x < 1 \\ = 0 \text{ for } x = 1 \\ < 0 \text{ for } x > 1 \end{cases}$$

- 21. $\log_a x = \frac{1}{\log_x a}$ for a > 0, $a \ne 1$ and x > 0, $x \ne 1$.
- 22. If $f: D_1 \to R$ and $g: D_2 \to R$ are two real functions and $c \in R$, then
 - (i) $f \pm g : D_1 \cap D_2 \rightarrow R$ is defined as $(f \pm g)(x) = f(x) \pm g(x)$
 - (ii) $fg: D_1 \cap D_2 \to R$ is defined as (fg)(x) = f(x)g(x)

(iii)
$$\left(\frac{f}{g}\right)$$
: $D_1 \cap D_2 - \{x : g(x) = 0\} \to R$ is deifined as $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

(iv) cf: $D_1 \cap D_2 \to R$ is defined as (cf) (x) = c f(x).

EXERCISE-1

- 1. Function as a special kind of relation.
- 2. Let f be a relation on the set N of natural numbers defined by $f = \{(n, 3n) : n \in N \text{.} \text{ Is f a function from N to N. If so, find the range of f.}$
- 3. Function as a correspondence.
- 4. Domain, co-domain and range of a function.
- 5. Consider a rule f(x) = 2x 3 associating elements of N (set of natural numbers) to elements of N. This rule does not define a function from N to itself, because $f(1) = 2 \times 1 3 = -1 \notin N$ i.e., $1 \in N$ is not associated to any elements.
- 6. Equal functions,?
- 7. Let $f: R \{2\} \to R$ be defined by $f(x) = \frac{x^2 4}{x 2}$ and $g: R \to R$ be defined by g(x) = x + 2. Find whether f = g or not.
- 8. Let $f: z \to Z$, $g: z \to Z$ be function defined by $f = \{(n, n^2) : n \in Z\}$, $g = \{(n, \mid n \mid^2) : n \in Z\}$. Show that : f = g.
- 9. Express the following functions as set of ordered pairs and determine their ranges:
 - (a) $f: A \to R$, $f(x) x^2 + 1$, where $A = \{-1, 0, 2, 4\}$.
 - (b) $g: A \to N$, g(x) = 2x, where $A = \{x : x \in N, x \le 10\}$.

By: Dir. Firoz Ahmad

- 10. Find the domain for which the function $f(x) = 2x^2 1$ and g(x) = 1 3x are equal.
- 11. Given $A = \{-1, 0, 2, 5, 6, 11\}$, $B = \{-2, -1, 0, 18, 28, 108\}$ and $f(x) = x^2 x 2$. Is f(A) = B? Find f(A).
- 12. Let $f: R \to R$ be given by $f(x) x^2 + 3$. Find:
 - (a) $\{x : f(x) = 28\}$
 - (b) the pre-images of 39 and 2 under f.
- 13. Let $f: R \to R$ be a function given by $f(x) = x^2 + 1$. Find:
 - (i) $f^{-1} \{-5\}$
- (ii) f⁻¹ {26}
- (iii) f⁻¹ {10, 37}
- 14. If $f: R \to R$ be defined as follows: $f(x) = \begin{cases} 1, & \text{if } x \in Q \\ -1, & \text{if } x \notin Q \end{cases}$

Find:

- (a) f(1/2), f(1/2), $f(\pi)$, $f(\sqrt{2})$
- (b) Range of f
- (c) pre-image of 1 and -1.
- 15. Let $f: R \to R$ be such that $f(x) = 2^x$. Determine
 - (a) Range of f
 - (b) $\{x : f(x) = 1\}$
 - (c) Whether f(x + y) = f(x). f(y) holds.
- 16. Let A be the set of two positive integers. Let $F: A \to Z^+$ (set of positive integers be defined by) f(n) = p, where p is the highest prime factor of n

If range of $f = \{3\}$. Find set A. Is A unquely determined?

- 17. Let $A \subseteq N$ and $f : A \rightarrow A$ be defined by
 - f(n): the highest prime factor of n.

If range of f is A. Determine A. Is A uniquely determined.

- 18. What is the fundamental difference between a relation and a function ? Is every relation a function ?
- 19. Let $A = \{-2, -1, 0, 1, 2\}$ and $f : A \to Z$ be a function defined by $f(x) = x^2 2x 3$. Find :
 - (a) range of f i.e. f(A)
 - (b) pre-images of 6, -3 and 5.
- 20. If a function $f: R \to R$ be defined by $f(x) = \begin{cases} 3x-2, & x < 0; \\ 1, & x = 0; \\ 4x+1, & x > 0. \end{cases}$

Find f(1), f(-1), f(0), f(2).

- 21. A function $f: R \to R$ is defined by $f(x) = x^2$. Determine
 - (a) range of f,

- (b) $\{x : f(x) = 4\}$
- (c) $\{y : f(y) = -1\}$
- 22. Write the following relations as sets of ordered pairs and find which of them are functions:
 - (a) $\{(x, y) : y = 3x, x \in \{1, 2, 3\}, y \in \{3, 6, 9, 13\}\}$
 - (b) $\{(x, y) : y > x + 1, x = 1, 2, \text{ and } y = 2, 4, 6\}$
 - (c) $\{(x, y) : x + y = 3, x, y \in \{0, 1, 2, 3\}\}$
- 23. If f, g, h are three functions defined from R to R as follows:
 - (i) $f(x) = x^2$
 - (ii) $g(x) = \sin x$
 - (iii) $h(x) = x^2 + 1$

Find the range of each function.

24. Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 5, 9, 11, 15, 16\}$

Determine which of the following sets are functions from X to Y

- (a) $f_1 = \{(1, 1), (2, 1), (3, 1), (4, 15)\}$
- (b) $f_2 = \{(1, 1,), (2, 7), (3, 5)\}$
- (c) $f_3 = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}.$
- 25. Let $A = \{12, 13, 14, 15, 16, 17\}$ and $f: A \rightarrow Z$ be a function given by f(x) = highest prime factor of X.

Find range of f.

- 26. If $F : R \to R$ be defined by $f(x) = x^2 + 1$, then find $f^{-1}\{17\}$ and $f^{-1}\{-1\}$.
- 27. Let $A = \{9, 10, 11, 12, 13\}$ and $f: A \rightarrow N$ be defined by f(n) = the highest prime factor of n. Find the range of f.
- 28. The function f is defined by $f(x) = \begin{cases} x^2, & 0 \le x \le 3 \\ 3x, & 3 \le x \le 10 \end{cases}$

The relation g is defined by $g(x) = \begin{cases} x^2, & 0 \le x \le 2 \\ 3x, & 2 \le x \le 10 \end{cases}$

Show that f is a function and g is not a function.

- 29. If $f(x) = x^2$, find $\frac{f(1.1) f(1)}{(1.1) 1}$
 - 30. If $f(x) = 3x^4 5x^2 + 9$, find f(x 1).
 - 31. If $f(x) = x + \frac{1}{x}$, prove that $[f(x)]^3 = f(x^3) + 3f(\frac{1}{x})$.
 - 32. If $f(x) = \frac{1}{2x+1}$, $x \neq -\frac{1}{2}$, then show that

By: Dir. Firoz Ahmad

$$f(f(x)) = \frac{2x+1}{2x+3}$$
, prove that $x \neq -\frac{3}{2}$

- 33. If $f(x) = \frac{x-1}{x+1}x \neq -1$, then show that $f(f(x)) = -\frac{1}{x}$, provided that $x \neq 0$.
- 34. Let f be defined by f(x) = x 4 and g be defined by

$$g(x) = \begin{cases} \frac{x^2 - 16}{x + 4} &, & x \neq -4 \\ \lambda &, & x = -4 \end{cases}$$

Find λ such that f(x) = g(x) for all x.

35. If f is a real function defined by $f(x) = \frac{x-1}{x+1}$, then prove that :

$$f(2x) = \frac{3f(x)+1}{f(x)+3}$$

- 36. If $f(x) = (x a)^2 (x b)^2$, find f(a + b).
- 37. If $y(x) = \frac{ax b}{bx a}$, show that x = f(y).

$$x^2$$
, when $x < 0$

38. If
$$f(x) = \begin{cases} x & \text{, when } 0 \le x < 1 \\ \frac{1}{x} & \text{, when } x \ge 1 \end{cases}$$

Find (a)
$$f(1/2)$$

(b)
$$f(-2)$$

(d)
$$f(\sqrt{3})$$

(e)
$$f(\sqrt{-3})$$

- 39. If $f(x) = x^3 \frac{1}{x^3}$, show that $f(x) + f(\frac{1}{x}) = 0$.
- 40. If for non-zero x, a $f(x) + b f\left(\frac{1}{x}\right) = \frac{1}{x} 5$, where $a \ne b$, then find f(x).
- 41. If $f(x) = \frac{x+1}{x-1}$, show that f[f(x)] = x.
- 42. Find the domain of each of the following functions:

(i)
$$f(x) = \sqrt{x-2}$$

(ii)
$$f(x) = \frac{1}{\sqrt{1-x}}$$

(iii)
$$f(x) = \sqrt{4 - x^2}$$

43. Find the domain of the function f(x) defined by

$$f(x) = \sqrt{4 - x} + \frac{1}{\sqrt{x^2 - 1}}$$

44. Find the domain and range of the function f(x) given by

$$f(x) = \frac{x-2}{3-x}$$

45. Find the range of each of the following functions:

$$(i) \quad f(x) = \frac{1}{\sqrt{x-5}}$$

(ii)
$$f(x) = \sqrt{16 - x^2}$$

(iii)
$$f(x) = \frac{x}{1+x^2}$$

(iv)
$$f(x) = \frac{3}{2-x^2}$$

- 46. Find the domain and range of the function $f(x) = \frac{x^2 9}{x^2 3}$
- 47. Let $f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in R \right\}$ be a function from R into R. Determine the range of f.
- 48. Find the domain and range of the function

$$f = \left\{ \left(x : \frac{1}{1 - x^2} \right) : x \in R, x \neq \pm 1 \right\}$$

- 49. Find the domain and range of the function $f(x) = \frac{1}{2-\sin 3x}$
- 50. Find the domain of each of the following real valued functions of real variables:

(i)
$$f(x) = \frac{1}{x}$$

(ii)
$$f(x) = \frac{1}{x - 7}$$

(ii)
$$f(x) = \frac{1}{x-7}$$
 (iii) $f(x) = \frac{3x-2}{x+1}$

(iv)
$$f(x) = \frac{2x+1}{x^2-9}$$

(iv)
$$f(x) = \frac{2x+1}{x^2-9}$$
 (v) $f(x) = \frac{x^2+2x+1}{x^2-8x+12}$

51. Find the domain of each of the following real valued frunctions for real variable:

(i)
$$f(x) = \sqrt{x-2}$$

(ii)
$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$

(iii)
$$f(x) = \sqrt{9 - x^2}$$
 (iv) $f(x) = \sqrt{\frac{x - 2}{2}}$

(iv)
$$f(x) = \sqrt{\frac{x-2}{3-x}}$$

- 52. Fractional Part Function.
- 53. Exponential function.
- 54. Logarithmic function.

By: Dir. Firoz Ahmad

- 55. Reciprocal of a function.
- 56. What are the sum and difference of the identity function and the reciprocal function?
- 57. Find the product of the identity function and the modulus function.
- 58. Find the quotient of the identity function by the modulus function.
- 59. Find the product of the identity function and the reciprocal function.
- 60. Find the quotient of the identity function by the reciprocal function.
- 61. Let C be a non-zero real number and $f: R \to R$ be a function defined by $f(x) = \frac{x}{c}$ for all $x \in R$. Find (i) cf (ii) $c^2 f$ (iii) $\left(\frac{1}{c}\right) f$.
- 62. Let f and g be real functions defined by $f(x) = \sqrt{x+2}$ and $g(x) = \sqrt{4-x^2}$. Then find each of the following functions:
 - (i) f + g

- (ii) f g
- (iii) fg

(iv) $\frac{f}{\sigma}$

(v) ff

- (vi) gg
- 63. Let f be the exponential function and g be the logarithmic function. Find:
 - (i) (f + g)(1)
- (ii) (fg) (1)
- (iii) (3f) (1)
- (iv) (5 g) (1)
- 64. Find the domain of each of the following function given by :
 - (i) $f(x) = \frac{1}{\sqrt{x |x|}}$ (ii) $f(x) = \frac{1}{\sqrt{x + |x|}}$

(iii)
$$f(x) = \frac{1}{\sqrt{x - [x]}}$$
 (iv) $\frac{1}{\sqrt{x + [x]}}$

- 65. Find the domain of definition of the function f(x) given by

$$f(x) = \log_4 \{\log_5 (\log_3(18x - x^2 - 77))\}$$

66. Find the domain of definition of the function f(x) givey by

$$f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$$

- 67. Find the range of each of the following functions:
- (i) f(x) = |x 3| (ii) f(x) = 1 |x 2| (iii) $f(x) = \frac{|x 4|}{|x 4|}$
- 68. Find the domain and range of each of the following functions given by:
 - (i) $f(x) = \frac{1}{\sqrt{x [x]}}$ (ii) f(x) = 1 |x 3|

69. Find the domain of the real function f(x) defined by

$$f(x) = \sqrt{\frac{1 - |x|}{2 - |x|}}$$

- 70. Find f + g, f g, $cf = (c \in R, C \neq 0)$, fg, $\frac{1}{f}$ and $\frac{f}{g}$ in each of the following:
 - (i) If $f(x) x^3 + 1$ and g(x) = x + 1
 - (ii) If $f(x) = \sqrt{x-1}$ and $g(x) = \sqrt{x+1}$
- 71. If $f(x) = \log_e (1 x)$ and g(x) = [x], then determine each of the following functions:
 - (i) f + g

(ii) fg

(iii) $\frac{f}{g}$

(iv) $\frac{g}{f}$

Also, find (f + g) (-1), (fg) (0), $\left(\frac{f}{g}\right)\left(\frac{1}{2}\right)$, $\left(\frac{g}{f}\right)\left(\frac{1}{2}\right)$.

- 72. If f, g, h are real function defined by $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x}$ and $h(x) = 2x^2 3$, then find the values of (2f + g h) (1) and (2f + g h) (0).
- 73. The function f is defined by $f(x) = \begin{cases} 1-x & , & x < 0 \\ 1 & , & x = 0 \end{cases}$. Draw the graph of f(x).

EXERCISE-2

Answer each of the following questions in one word or one sentence or as per exact requirement of the questions.

- 1. Write the range of the real function f(x) = |x|.
- 2. Write the range of the function $f(x) = \sin [x]$, where $\frac{-\pi}{4} \le x \le \frac{\pi}{4}$
- 3. If $f(x) = \cos [\pi^2] x + \cos [-\pi^2] x$, where [x] denotes the greatest integer less than or equal to x, then write the value of $f(\pi)$.
- 4. Write the range of the function $f(x) e^{x-[x]}$, $x \in R$.
- 5. If $f(x) = 1 \frac{1}{x}$, then write the value of $f\left(f\left(\frac{1}{x}\right)\right)$.
- 6. If $f(x) = 4x x^2$, $x \in R$, then write the value of f(a + 1) f(a 1).
- 7. Write the domain and range of function f(x) given by $f(x) = \frac{1}{\sqrt{x |x|}}$
- 8. Write the domain and range of function f(x) given by $f(x) = \sqrt{[x]-x}$.

EXERCISE-3

If $f(x) = \cos(\log x)$, then

$$f(x^2)\ f(y^2) - \frac{1}{2} \Bigg\{ f\Bigg(\frac{x^2}{y^2}\Bigg) + f(x^2y^2) \Bigg\} \ \ \text{has the value}$$

(a) -2

(b) -1

(c) 1/2

(d) none of these

If $f(x) = \cos(\log x)$, then $f(x) f(y) - \frac{1}{2} \left\{ f\left(\frac{x}{v}\right) + f(xy) \right\}$ has the value

(a) -1

(b) 1/2

(c) -2

(d) none of these

The range of $f(x) = \cos [x]$, for $\pi/2 < x < \pi/2$ is

- (a) $\{-1, 1, 0\}$
- (b) $\{\cos 1, \cos 2, 1\}$ (c) $\{\cos 1, -\cos 1, 1\}$ (d) [-1, 1]

Which of the following are functions:

(a) $\{(x, y) : y^2 = x, x, y \in R\}$

(b) $[(x, y(: y = |x|, x, y \in R)]$

(c) $\{(x, y) : x^2 + y^2 = 1, x, y \in R\}$

(d) $\{(x, y) : x^2 - y^2 = 1, x, y \in R\}$

5. If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+3^3}{1+3x^2}$, then f(g(x)) is equal to

(a) f(3x)

- (b) $\{f(x)\}^3$
- (c) 3f(x)
- (d) f(x)

6. If $f(x) = \log\left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2x}{1+x^2}\right)$ is equal to

- (a) $\{f(x)\}^2$
- (b) $\{f(x)\}^3$
- (c) 2f(x)
- (d) 3f(x)

7. If $f(x) = \frac{2^{x} + 2^{-x}}{2}$, then f(x + y) f(x - y) is equals to

- (a) $\frac{1}{2} \{f(2x) + f(2y)\}$ (b) $\frac{1}{2} [f(2x) f(2y)]$ (c) $\frac{1}{4} [f(2x) + f(2y)]$ (d) $\frac{1}{4} [f(2x) f(2y)]$

8. If $2f(x) - 3f\left(\frac{1}{x}\right) = x^2$ (x \neq 0), then f(2) is equal to

(a) $-\frac{7}{4}$

(b) $\frac{5}{2}$

(c) -1

(d) none of these

9. If $f(x) = \cos(\log_e x)$, then $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right) - \frac{1}{2} \left\{ f(xy) + f\left(\frac{x}{y}\right) \right\}$ is equal to

- (a) cos(x y)
- (b) $\log (\cos (x y))$

(d) cos(x + y)

10. The function $f: R \to Ris$ defined by $f(x) = \cos^2 x + \sin^4 x$. Then, f(R) =

- (a) [3/4, 1]
- (b) (3/4, 1]
- (c) [3/4, 1]
- (d) (3/4, 1)

- 11. If $f: R \to R$ and $g: R \to R$ are defined by f(x) = 2x + 3 and $g(x) x^2 + 7$, then the values of x such that g(f(x)) = 8 are
 - (a) 1, 2

- (b) -1, 2
- (c) -1, -2
- (d) 1, -2

12. If $f: [-2, 2] \rightarrow R$ is defined by

$$f(x) = \begin{cases} -1 & , \text{for } -2 \le x \le 0 \\ x - 1 & , \text{for } 0 \le x \le 2 \end{cases}, \text{ then }$$

 ${x \in [-2, 2] : x \le 0 \text{ and } f(|x|) = x} =$

(a) $\{-1\}$

- (c) $\left\{-\frac{1}{2}\right\}$
- (d) \(\phi \)
- 13. If $f(x) = 64x^3 + \frac{1}{x^3}$ and α , β are the roots of $4x + \frac{1}{x} = 3$. Then,
 - (a) $f(\alpha) \neq f(\beta) = -9$
- (b) $f(\alpha) = f(\beta) = 63$
- (c) $f(\alpha) \neq f(\beta)$
- (d) none of these
- 14. If $e^{f(x)} = \frac{10 + x}{10 x}$, $x \in (-10, 10)$ and $f(x) kf\left(\frac{200x}{100 + x^2}\right)$, then k =
 - (a) 0.5

(b) 0.6

(c) 0.7

(d) 0.8

15. If $f: R \to R$ be given by

$$f(x) = \frac{4^x}{4^x + 2}$$
 for all $x \in R$. Then

- (a) f(x) = f(1 x)
- (b) f(x) + f(1-x) = 0 (c) f(x) + f(1-x) = 1 (d) f(x) + f(x-1) = 1

- 16. The domain of definition of $f(x) = \sqrt{\frac{x+3}{(2-x)(x-5)}}$ is
 - (a) $(-\infty, -3] \cup (2, 5)$
- (b) $(-\infty, -3) \cup (2, 5)$ (c) $(-\infty, -3] \cup [2, 5]$
- (d) none of these
- 17. The domain of definition of the function $f(x) = \sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{1-x}{1+x}}$ is
 - (a) $(-\infty, -2) \cup (2, \infty)$
- (b) [-1, 1]
- (c) ∞

(d) none of these

- 18. The domain of definition of $f(x) = \sqrt{4x x^2}$ is
 - (a) R [0, 4]
- (b) R (0, 4)
- (c) (0, 4)
- (d) [0, 4]
- 19. The domain of definition of $f(x) = \sqrt{x-3-2\sqrt{x-4}} \sqrt{x-3+2\sqrt{x-4}}$ is
 - (a) $[4, \infty)$

- (b) $(-\infty, 4]$
- (c) $(4, \infty)$
- (d) $(-\infty, 4)$

- 20. The range of the function f(x) = |x 1| is
 - (a) $(-\infty, 0)$
- (b) $[0, \infty)$
- (c) $(0, \infty)$
- (d) R